Ultrafast magnetoelastic and thermoelastic dynamics in hexagonal $YbMnO_3$ single crystals observed by femtosecond spectroscopy

K. H. Wu^{*a*}, H.-J. Chen^{*a*}, J. B. Zeng^{*a*}, C. W. Luo^{*a*}, T. M. Uen^{*a*}, J. Y. Juang^{*a*}, J.-Y. Lin^{*b*}, T. Kobayashi^{*a*,*c*}, and M. Gospodinov^{*d*}

^aDepartment of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan ^bInstitute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

^cDepartment of Applied Physics and Chemistry and Institute for Laser Science, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan

^dInstitute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria, EU

In this poster, the ultrafast dynamics probed by wavelength-tunable femtosecond pump-probe spectroscopy was performed to disclose the coupling among the magnetization, polarization, and strain degrees of freedom simultaneously in the hexagonal YbMnO₃ single crystals. This result implies unambiguously that the electroelastic effect and magnetoelectric effect near T_N are controlled by the giant magnetoelastic effect.

This project is financially sponsored by the National Science Council (grant no. NSC 98-2112-M-009-006-MY3), the Ministry of Education (2009 MOE ATU program at NCTU) of Taiwan, R.O.C., and TK-X-1712 (2007 Bulgaria).