Collective spin states in lightly doped LaCoO₃

E. Vavilova^{*a*}, A. Alfonsov^{*b*}, V. Kataev^{*b*}, A. Podlesnyak^{*c*}, E. Pomjakushina^{*d*}, D.I. Khomskii^{*e*}, and B. Büchner^{*b*}

^aZavoisky Physical Technical Institute, RAS, Kazan, Russia
^bIFW Dresden, Dresden, Germany
^cOak Ridge National Laboratory, USA
^dETH Zürich, Zürich, Switzerland
^eII. Physikalisches Institut, Universität zu Köln, Germany

We present results of electron spin- (ESR), nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) studies of single crystals of the lightly doped LaCoO₃. In contrast to undoped system, which is nonmagnetic at $T \leq 30$ K, a very small Sr²⁺ doping ($x \sim 0.002$) yields a strong magnetization already at low T. ⁵⁹Co NMR measurements indicate the formation of extended magnetic clusters in this temperature regime. ESR spectroscopy reveals multiple gapped resonance excitations with different gfactor values suggesting that magnetic clusters have a large spin multiplicity and substantial spin-orbital coupling. These results and INS data [see, A. Podlesnyak, *et al.*, Phys. Rev. Lett. **101**, 247603 (2008)]. gives evidence that the cluster comprises 7 magnetic Co ions. We argue that the doped hole couples these ions ferromagnetically yielding a spin-state polaron with a huge local magnetic moment. Influence of different sorts of dopants on the polaron formation was studied.