High-Field Magnetic Phase of the S=1/2 Frustrated Chain Antiferromagnet $LiCuVO_4$

A. I. Smirnov^a, L. E. Svistov^a, M. Hagiwara^b, T. Fujita^b, H. Yamaguchi^b, S. Kimura^b, K. Omura^b, A. Prokofiev^c, and Z. Honda^d

^aP.L.Kapitza Institute for Physical Problems RAS, Moscow, Russia

^bKYOKUGEN, Osaka Univ. Osaka, Japan

^eInstitut für Festkörperphysik Technische Universität Wien, Wien, Austria

^dGraduate School of Science and Engineering, Saitama University, Saitama, Japan

A new high magnetic field phase transition was found in magnetization measurements of the frustrated S=1/2 chain compound LiCuVO₄ just below the saturation field, which is about 45 T. This magnetic phase could be a spin nematic, resulting from a condensation of two magnon bound states. The spin-nematic phase was predicted theoretically in the S=1/2 linear chain model with the nearest neighbor ferromagnetic and the next nearest neighbor antiferromagnetic exchange interactions. From theoretical considerations, the nematic phase should be realized in a magnetic field range below saturation field. The slope of magnetization in the high field phase is in good agreement with a calculated in a realistic quasi 2-dimensional model of the spin-nematic phase.¹ We compare the observed phase diagram with theoretical predictions and discuss the possibility of the spin nematic phase.

¹M. E. Zhitomirsky and H. Tsunetsugu, Europhys. Lett. **92 37001 (2010)**.