Stripe-type order of spin, orbitals and charges in single-layered manganites

H. Ulbrich^{*a*}, P. Steffens^{*b*}, O.J. Schumann^{*a*}, D. Senff^{*a*}, Y. Sidis^{*c*}, P. Reutler^{*d*}, A. Revcolevschi^{*d*}, and M. Braden^{*a*}

^aII. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany ^bInstitut Laue-Langevin (ILL), BP 156, 38042 Grenoble Cedex 9, France ^cLaboratoire Léon Brillouin, C.E.A./C.N.R.S., F-91191 Gif-sur-Yvette Cedex, France ^dLaboratoire de Chimie des Solides, LPCES - ICMMO, Univ. de Paris Sud XI, 91405 Orsay, France

Stripe-type or checkerboard ordering of charges and orbitals in metal-oxide compounds is linked to exotic behavior such as high-temperature superconductivity and colossal magnetoresistivity. We studied two single-layer manganites with a doping level slightly above half-doping, x>0.5, $La_{0.42}Sr_{1.58}MnO_4$ (LSMnO) and $Pr_{0.33}Ca_{1.67}MnO_4$ (PCMnO). For this doping range there are essential controversies about the nature of the charge orbital and spin order. The neutron-scattering experiments on LSMnO yield clear evidence for ferromagnetic zigzag chains being disrupted by stripes of excess of Mn^{4+} ions¹. In this material three incommensurate and one commensurate order parameter are tightly coupled. Elastic neutron scattering of Mn^{3+} spins which is opposite to our finding for LSMnO4. The spin-wave dispersion in PCMnO starting at the incommensurate magnetic zone-centers point to a dispersion resembling the hour-glass dispersion in cuprates and $La_{1.67}Sr_{0.33}CoO_4$.

¹H. Ulbrich *et al.*, Phys. Rev. Lett. **106**, 157201 (2011).