Dynamic Minor and Major Hysteresis Loops of New Ferromagnetic Oxi-halide System Co₇(TeO₃)₄Br₆

M. Prester^a, D. Drobac^a, I. Živković^a, and H. Berger^b

^aInstitute of Physics, P.O.B.304, HR-10 000, Zagreb, Croatia ^bInstitute of Physics of Complex Matter, EPFL, 1015 Lausanne, Switzerland

New oxi-halide $\text{Co}_7(\text{TeO}_3)_4\text{Br}_6$ reveals¹ sequence of magnetic orderings below $T_N=34$ K. Magnetism of this system is characterized by competing magnetic interactions dominated by strong single ion anisotropy energy of variously coordinated Co^{2+} ions¹. We report on interesting magnetic dynamics in the compound's ferrimagnetic phase, $T \leq T_C=27$ K marked, at T_C , by unusually big imaginary part of ac susceptibility. Effective parameters of the compound's magnetism, notably a very large Arrhenius activation energy of 17.2 meV involved with domain wall dynamics, enable detailed studies of dissipative relaxations within experimentally favorable frequency window 0.05 Hz- 1 kHz. Cole-Cole plots are almost semi-circular, consistent with the validity of the Debye-relaxations model. Induction type hysteresis, in their transformation from minor to major loops, will be presented and interpreted within a simple model of thermally activated collective spin reversals. Associated dissipation is studied by imaginary susceptibility scanned by dc magnetic field ramping up and down.

¹M. Prester, I. Živković, O. Zaharko, D. Pajić, P. Treggana-Piggott, and H. Berger, Phys. Rev. B **79**, 144433 (2009).