Low temperature Raman study of the spin ladder compound BiCu₂PO₆

A. Antonakos^a, E. Liarokapis^a, S. Wang^b, and K. Conder^b

^aDepartment of Physics, National Technical University of Athens, Athens 15780, Greece b Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

Recently, quantum antiferromagnets with an intrinsically disordered ("spin liquid") ground state have attracted great interest ¹. BiCu₂PO₆ shows such a structure where the Cu spins form two-leg zigzag ladders providing a valuable model of quantum magnets. From a recent study details on the growth of undoped and Zn-doped single crystals, the structure, and the magnetic properties were published Bi(Cu_{1-x}Zn_x)₂PO₆⁻². It was shown that the magnetic susceptibility χ (T) passes through a broad maximum around 60K confirming the formation of a spin singlet ground state.

In this study, we investigate the low temperature micro-Raman spectra of the $BiCu_2PO_6$ single crystals. A detailed assignment of the observed bands is suggested based on the selection rules, the spectral evolution with temperature, and lattice dynamic calculations. Phonon modifications at low temperatures indicate a coupling of the lattice with the antiferromagnetic state. The Raman results are compared with the findings from other experimental methods and theoretical calculations.

¹E. Dagotto and T.M. Rice, Science 271, 618 (1996)

 $^2 \rm S.$ Wang et al, Journal of Crystal Growth, 313, 51-55 (2010), F. Casola et al, Phys. Rev. Lett. 105, 067203 (2010)