Quantum Spin Liquids In Quantum Spin ices

L. Balents^e, L. Savary^b, K. A. Ross^a, and B. D. Gaulin^{c,da}

^aDepartment of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada ^bEcole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France

^cCanadian Institute for Advanced Research, 180 Dundas St. W., Toronto, Ontario, M5G 1Z8, Canada ^dBrockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1, Canada ^eKavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106-4030, U.S.A.

A flurry of recent theory and experiments has highlighted exotic physics in the spin ice materials, $Ho_2Ti_2O_7$ and $Dy_2Ti_2O_7$, which comprise classical Ising spins on a pyrochlore lattice. There are a few related materials in which quantum fluctuations of spins are significant on the same lattice. I will discuss a general microscopic model for these materials, and specifically the case of $Yb_2Ti_2O_7$, where experiments have revealed a puzzling low temperature state in low field, and present a case that this indeed is an example of quantum spin ice. The ground state of this material may well be a quantum spin liquid, with even more exotic physics than in the classical spin ices. I will describe this quantum spin liquid state, its properties, and how this proposal may be further pursued.

INVITED PAPER