Quantum criticality and superconductivity in $CeCu_2Si_2$

O. Stockert^{*a*}, J. Arndt^{*a*}, E. Faulhaber^{*b*}, K. Schmalzl^{*c*}, W. Schmidt^{*c*}, H.S. Jeevan^{*a*}, C. Geibel^{*a*}, M. Loewenhaupt^{*b*}, and F. Steglich^{*a*}

^aMax-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany ^bInsitut für Festkörperphysik, technische Universität Dresden, Dresden, Germany ^cJülich Centre for Neutron Science JCNS, Forschungszentrum Jülich, Outstation at ILL, Grenoble, France

The heavy-fermion compound CeCu_2Si_2 displays unconventional superconductivity and is already at ambient pressure located in the vicinity of a quantum critical point (QCP) where long-range antiferromagnetism vanishes. Using elastic and inelastic neutron scattering we studied in detail the antiferromagnetic order and the spin excitations spectrum around the QCP. Antiferromagetism and superconductivity exclude each other on a microscopic scale. While for magnetically ordered samples critical slowing down of the spin fluctuations above T_N is observed, shows the normal state response of superconducting CeCu_2Si_2 an almost critical slowing down for $T \rightarrow 0$. Its temperature dependence and scaling behavior are in line with the expectations for an itinerant spin-density-wave QCP. This interpretation is substantiated by an analysis of specific heat data and the momentum dependence of the magnetic excitation spectrum. In contrast, the magnetic response in the superconducting state is characterized by a transfer of spectral weight to energies above a spin excitation gap. Our results strongly imply that the coupling of Cooper pairs in CeCu₂Si₂ is mediated by overdamped spin fluctuations.