Spin polarized conductance in ferromagnet / insulator / conventional superconductor junctions

I. Shigeta^a, Y. Tanaka^b, A. A. Golubov^c, and M. Hiroi^a

^aDepartment of Physics and Astronomy, Kagoshima University, Kagoshima 890-0065, Japan ^bDepartment of Applied Physics, Nagoya University, Nagoya 464-8603, Japan ^cFaculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands

The modified Blonder-Tinkham-Klapwijk (BTK) theory has been successfully used to describe the currentvoltage characteristics of ferromagnet / insulator / conventional superconductor contacts. The spin polarization P of the Andreev reflection measurements for ferromagnetic materials has been normally determined by using the modified BTK theory¹. However, the modified BTK theory assumes the elementally sum of only two currents of the fully-polarized state and the non-polarized state. Therefore, based on the BTK theory, we here suggest another theoretical model of the spin polarized conductance $\sigma(eV)$ in the system of ferromagnet / insulator / conventional superconductor contacts. We consider the exchange potential U_{ex} of the ferromagnetic materials corresponding to the parameter of the spin polarization. The zero-bias conductance $\sigma(0)$ gradually decreases with the increase of U_{ex} because the Andreev reflection is suppressed at the junction interface of ferromagnet / superconductor contacts in the case of finite values of U_{ex} . Finally, we discuss fitting results of $\sigma(eV)$ and P for Heusler alloy/Pb planar junctions with the theoretical model.

¹Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, Phys. Rev. B **64**, 224425 (2001).