${f Q}$ uantum impurities and resultant two-channel Kondo problem in ${f ZrAs}_{1.58}{f Se}_{0.39}$

T. Cichorek^{*a*}, L. Bochenek^{*a*}, A. Czulucki^{*b*}, M. Schmidt^{*b*}, G. Auffermann^{*b*}, Y. Prost^{*b*}, R. Niewa^{*c*}, F Steglich^{*b*}, and R. Kniep^{*b*}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland ^bMax Planck Institute for Chemical Physics of Solids, Dresden, Germany ^cInstitute for Inorganic Chemistry, University of Stuttgart, Germany

Low-*T* electrical resistivity $\rho(T)$ of the closely related phases $\operatorname{ZrAs}_{1.58}\operatorname{Se}_{0.39}$ (3% of vacancies within the monoatomic As layers) and $\operatorname{ZrP}_{1.54}\operatorname{S}_{0.46}$ (the 2*a* site fully occupied with P atoms) has been investigated along the *c* axis down to $T \geq 0.08$ K and in $B \leq 14$ T. Whereas for both systems a $-AT^{1/2}$ term in $\rho(T)$ was observed below $T \approx 15$ K, their response to the magnetic field was found to be qualitatively different: for the As-based compound, a coefficient $A (= 0.167 \ \mu\Omega \mathrm{cmK}^{-1/2})$ remains virtually unchanged even in the highest available magnetic fields. For the P-based compound, however, the *A*-coefficient value is linearly reduced from 0.038 to 0.008 $\mu\Omega \mathrm{cmK}^{-1/2}$ with increasing *B* up to 14 T, *i.e.*, by factor nearly 5. These distinctly different observations indicate qualitatively different phenomena occurring in the material with (ZrAs_{1.58}Se_{0.39}) and without (ZrP_{1.54}S_{0.46}) broken pnictogen-pnictogen chemical bonds: a $\rho(T, B)$ behavior of the latter system is characteristic for the 3D electron-electron interactions, while the *B*-independent $-AT^{1/2}$ term points at a two-channel Kondo problem derived from two-level states triggered by non-magnetic quantum impurities in the As layers. R. Niewa *et al.*, J. Solid State Chem. **183**, 1309 (2010).