¹¹B-NMR study on Shastry-Sutherland system TbB_4

T. Muto^a, K. Kobayashi^a, T. Goto^a, A. Oosawa^a, S. Yoshii^b, T. Sasaki^c, N. Kobayashi^c, S. Michimura^d F. Iga^d, and T. Takahata^d

^aDepartment of Physics, Sophia University, Tokyo, Japan ^bCINTS Tohoku University, Sendai, Japan ^cInstitute for Materials Research, Tohoku University, Sendai, Japan ^dADSM, Hiroshima University, Higashi-Hiroshima, Japan

The network of magnetic R ions in Rare-earth tetraborides RB₄ (R = La-Lu) is characterized by orthogonal dimers that is equivalent to the Shastry-Sutherland lattice (SSL) with magnetic frustration.¹ In RB₄ system, the coexistence of magnetic frustration, the quadrupole interactions and the RKKY interactions may result in an novel magnetic states. TbB₄ shows a large magnetization jump at H=15.9T for H//[100].² To investigate the change of the magnetic structure with this jump, we measured the field dependence of ¹¹B-NMR spectra at various resonant magnetic fields for H // [100]. Observed ¹¹B-NMR spectra showed a drastic change at H=15.9T, suggesting that the magnetic structure changes on the metamagnetic transition. We estimated the hyperfine field at each ¹¹B-site by the classical dipole-dipole interaction to reproduce the observed NMR spectra. With an assumption of a spin model in accordance with the magnetization jump, the calculated spectra showed a qualitative agreement with an observation.

¹B.S.Shastry et al., Physica B **208**, 1069 (1981). ²S.Yoshii et al., Phys. Rev. Lett **101**, 087202 (2008).