Cu-NMR study on dimer-chain complex quantum spin system Cu₃Mo₂O₉

K. Misoka^{*a*}, K. Doi^{*a*}, T. Hamasaki^{*a*}, H. Kuroe^{*a*}, T. Goto^{*a*}, T. Sekine^{*a*}, T. Sasaki^{*b*}, M. Hase^{*c*}, K. Oka^{*d*} T. Ito^{*d*}, and H. Eisaki^{*d*}

^aDepartment of Physics, Sophia University, Tokyo, Japan

^bInstitute for Materials Research, Tohoku University, Sendai, Japan

^cNational Institute for Materials Science, Tsukuba, Japan

^dNational Institute of Advanced Industrial Science and Technology, Tokyo, Japan

The low dimensional quantum spin system $\text{Cu}_3\text{Mo}_2\text{O}_9$ possesses two spin degrees of freedom, the antiferromagnetic chain denoted as Cu(1), and dimer-like site denoted as Cu(2) and Cu(3), which are crystallographically slightly inequivalent. These two spin degrees of freedom are interacting with one another, and are expected to bring a novel spin state at low temperatures. So far, it has been reported by T. H. that this system shows a Néel order at $T_{\rm N} = 7.9$ K, with a slightly canted spin structure.¹ We have performed Cu-NMR study on a single crystal under a wide range of the magnetic field up to 16T. In the ordered state, the signal peak of the dimer-like site shows an anomalous splitting at high fields above $H_c(4.2K) \simeq 8$ T, where a slight magnetization jump of $0.01\mu_{\rm B}$ was observed, indicating an existence of the field-induced phase transition. A prominent hysteresis in spectra depending on the field-sweeping direction was observed at the vicinity of H_c , suggesting that the phase transition is of the first order and is involved in a spin-charge or spin-lattice coupling.

¹T. Hamasaki *et al.*, Phys. Rev. **B77** 134419 (2007).