Heat capacity analysis of LaB_6

M. Anisimov^a, A. Bogach^a, V. Glushkov^a, S. Demishev^a, N. Samarin^a, S. Gavrilkin^b, K. Mitsen^b, N. Shitsevalova^c, V. Filipov^c, S. Gabáni^d, K. Flachbart^d, and N. Sluchanko^a

^aA.M. Prokhorov General Physics Institute of RAS, 38 Vavilov street, Moscow 119991, Russia

^b P.N. Lebedev Physical Institute of RAS, Leninskii Prospect 53, Moscow 119991, Russia

 c Institute for Problems of Material Science of NASU, 3 Krzhyzhanovskii street, Kiev03680,Ukraine

^d Institute of Experimental Physics of SAS, 47 Watsonova steet, Košice SK-040 01, Slovakia

Rare earth hexaborides (RB₆) have been attracting much attention because of variety of their electronic and magnetic properties, which include antiferromagnetic (R-Ce, Pr, Nd, Gd, Dy, Tb, Ho), ferromagnetic (EuB₆), intermediate valence (SmB₆) and heavy fermion behavior (CeB₆). At the same time nonmagnetic LaB₆ plays the important role in estimating of magnetic contribution of above mentioned systems¹. The goal of present research is to investigate in details the heat capacity $C_P(T)$ on the high quality single crystals of La^NB₆ with the various boron isotope content (N= 10, 11, nat) in the wide range of temperatures 2-300K and in magnetic fields up to 9T. The data obtained allow to estimate correctly (*i*) the electronic component with $\gamma \sim 2.4$ mJ/(mol·K), (*ii*) contribution from quasilocal vibrational mode of La³⁺ ion with $\Theta_E \sim 152$ K, (*iii*) the Debye-type term from boron cage with $\Theta_D \sim 1160$ K and (*iv*) the low temperature defect mode component². The quantitative analysis of each contribution is presented.

¹T. Gürel, R. Eryiğit Phys. Rev. B 82, 104302 (2010).

²K.Takegahara and T.Kasuya, Sol. St. Commun. **53**, 21 (1985).