Zero-field NMR of ⁵⁹Co and ⁵⁵Mn in a Heusler Alloy Co₂MnGa

H. Nishihara^a, T. Baba^a, T. Kanomata^b, K. Kobayashi^c, R.Y. Umetsu^d, and R. Kainuma^c

Zero-field NMR spectra of ⁵⁹Co and ⁵⁵Mn are reported for a bulk sample of Heusler alloy Co₂MnGa which is a potential candidate for half-metallic ferromagnet. An asymmetric spectrum of ⁵⁹Co in Co₂MnGa has been interpreted as a sum of main peak due to Co sites with nearest-neighbors which consist of 4 Mn and 4 Ga in the L2₁ structure (67%), satellite signal due to Co sites with nearest-neighbors which consist of 3 Mn and 5 Ga (24%), one with nearest-neighbors which consist of 2 Mn and 6 Ga (8.6%), and one with nearest-neighbors which consist of 5 Mn and 3 Ga (1.4%). A spectrum of ⁵⁵Mn in Co₂MnGa has been interpreted as a sum of main peak due to Mn sites with 8 nearest-neighbor Co sites in the L2₁ structure (81%), satellite signal due to Mn sites with nearest-neighbors which consist of 7 Co and 1 Mn (7.2%), one with nearest-neighbors which consist of 6 Co and 2 Mn (4.9%), one with nearest-neighbors which consist of 5 Co and 3 Mn (3.2%). Atomic disorder in bulk material of Co₂MnGa is suggested to be less than that in Co₂FeAl, but larger than that in Co₂FeSi reported in literatures^{1,2}.

^aFaculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan

^bFaculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537, Japan

^cGraduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

^d Institute for Materials Research, Tohoku University, Sendai 980-8579, Japan

¹K. Inomata, M. Wojcik, E. Jedryka, N. Ikeda, and N. Tezuka, Phys. Rev. B 77 (2008) 214425.

²S. Wurmehl, J. Kohlhepp, H. J. M. Swagten and B. Koopmans, J. Phys. D **41** (2008) 115007.