${f Magnetic}\ {f properties}\ {f in}\ {f the}\ {f doped}\ {f spin-1/2}\ {f honeycomb-lattice}\ {f compound}\ {f In}_3{f Cu}_2{f VO}_9$

Y. J. Yan^a, Z. Y. Li^a, T. Zhang^a, X. G. Luo^a, G. J. Ye^a, Z. J. Xiang^a, P. Cheng^a, L. J. Zou^b, and X. H. Chen^a

^aHefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China ^bInstitute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, China

We report the magnetic properties in the Co- and Zn-doped spin-1/2 honeycomb-lattice compound $In_3Cu_2VO_9$. The magnetic susceptibility and specific heat experiments of $In_3Cu_2VO_9$ show no magnetic ordering down to 2 K. Approximately T²-dependent magnetic specific heat and linearly T-dependence spin susceptibility at low temperature range were observed in $In_3Cu_2VO_9$, suggesting a spin liquid candidate with a S = 1/2 honeycomb lattice. When Cu^{2+} ions are partially substituted by Co^{2+} ions, both impurity potential scattering and magnetic impurity scattering induced by magnetic Co^{2+} ions break the homogenous spin-singlet spin liquid state, releasing the AFM long-range correlation. While replacing Cu^{2+} with nonmagnetic Zn^{2+} ions, the antiferromagnetic correlation between Cu^{2+} ions is destroyed, leading to suppression of low-dimensional magnetic properties.