Magnetoresistance of PrB_6 and GdB_6

M. Anisimov^{*a*}, A. Bogach^{*a*}, V. Glushkov^{*a*}, S. Demishev^{*a*}, N. Samarin^{*b*}, N. Shitsevalova^{*b*}, V. Filipov^{*b*}, A. Kuznetsov^{*c*}, and N. Sluchanko^{*a*}

^aA.M. Prokhorov General Physics Institute of RAS, 38 Vavilov street, Moscow 119991, Russia ^bInstitute for Problems of Material Science of NAS, 3 Krzhizhanovskii street, Kiev 03680, Ukraine ^cMoscow Engineering Physics Institute, 31 Kashirskoe Shosse, Moscow 115409, Russia

The comprehensive study of transverse magnetoresistance (MR) has been carried out on the high quality single crystals of PrB₆ (T_N ≈6.7K) and GdB₆ (T_N ≈15.5K) in the wide range of temperatures 2-40K and magnetic fields up to 8T. The data obtained allow to establish the crossover of MR from negative (T>T_N) to positive (T<T_N) regime. The maximal value of positive MR does not exceed ~ 151% and ~ 11.7% for PrB₆ and GdB₆ respectively. The analysis of the curves $\Delta\rho(H)/\rho$ allows to separate three contributions to MR of RB₆ (R-Pr, Gd) ¹. In addition to the (*i*) negative contribution (~ H²) interpreted in the framework of Yosida model², (*ii*) a linear (~ H) and (*iii*) nonlinear ferromagnetic components were also observed. According to the procedure of ³ where these contributions were naturally interpreted for CeAl₂ in terms of spin-polaron model, the (*ii*), (*iii*) components should be ascribed to the ferromagnetic nanodomains (spin-polarized 5d-states) embedded in the metallic matrix of RB₆ (R-Pr, Gd).

¹M.A.Anisimov, A.V.Bogach, V.V.Glushkov et al., JETP **109**, 815 (2009). ²K. Yosida, Phys. Rev. **107**, 396 (1957). ³N.E. Sluchanko et al., JETP **98**, 793 (2004).