Coincidence of the Landau levels in wide HgTe quantum well

A.V. Suslov^{*a*}, M. Kharitonov^{*b*}, M.V. Yakunin^{*c*}, I.Yu. Smirnov^{*d*}, S.A. Dvoretsky^{*e*}, and N.N. Mikhailov^{*e*}

^aNational High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

^bDepartment of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

^cInstitut of Metal Physics, Ekaterinburg 620041, Russia

^dA.F. Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021, Russia ^eInstitute of Semiconductor Physics, Novosibirsk 630090, Russia

The magnetoresistance components ρ_{xx} and ρ_{xy} were measured in tilted magnetic fields of up to 18 T at temperatures down to 20 mK in a symmetrically doped n-Cd_xHg_{1-x}Te/HgTe/Cd_xHg_{1-x}Te heterostructure with the quantum well thickness of 20 nm (and the inverted band structure) grown on a (013) GaAs wafer. The electron density $n = 1.6 \times 10^{11} \text{ cm}^{-2}$, and mobility $\mu = 28 \ m^2/Vs$ were calculated from the results acquired in the perpendicular magnetic field. Coincidences of the quantum levels at small filling factors $2 \le \nu \le 8$ were observed on ρ_{xx} and ρ_{xy} at the tilt angle values of about 67, 78, and 83⁰. We compared our data with the Landau level spectrum in the tilted magnetic field, calculated using a 4band model for the HgTe quantum well.¹ We obtained good quantitative agreement for the Landau level crossing points, which allowed us to extract the band structure parameters, such as the Dirac velocity, band gap, effective masses and anisotropic g-factors, used as fitting variables.

¹M. König, H. Buhmann, L.W. Molenkamp, T.L. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang, J. Phys. Soc. Japan **77**, 031007 (2008).