Depression of positive magneto-conductance due to anti-weak localization effect in annealed In₂O₃-ZnO thick films

B. Shinozaki^{*a*}, S. Ezaki^{*a*}, K. Hidaka^{*a*}, K. Makise^{*b*}, T. Asano^{*a*}, N. Kokubo^{*c*}, K. Yamada^{*a*}, K. Yano^{*d*}, and H. Nakamura^{*d*}

^aDepartment of Physics, Kyushu University, Fukuoka, Japan

^bNational Institute of Information and Communication Technology, Iwaoka, Kobe ,Japan

^cCenter for Research and Advancement in Higher Education, Kyushu University, Fukuoka, Japan

^dAdvanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan

For thick $(In_2O_3)_{0.965}$ - $(ZnO)_{0.035}$ films with different resistivity ρ by post annealing in air, we have investigated $\rho(T)$ characteristics and magneto-conductance $\Delta\sigma$. The weak localization theory for the 3D system has been fitted to data of $\Delta\sigma(T)$ at temperatures below 50 K by the use of suitable inelastic scattering time $\tau_{in}(T)$ and T-independent spin-orbit(S-O) scattering time τ_{so} . We have found the ρ dependences of both times τ_{in} and τ_{so} for films with $4 \times 10^{-6} \Omega m < \rho(300 \text{ K}) < 1.5 \times 10^{-3} \Omega m$. As increasing of ρ , the ratio of τ_{so} and τ_{in} , τ_{so}/τ_{in} decreases from $\approx 4 \times 10^3$ to ≈ 10 and then, the sign of $\Delta\sigma$ at low temperatures changes from positive to negative. This means localization changes to antilocalization due to the heat treatment. However, strong ρ dependence of the ratio τ_{so}/τ_{in} cannot be explained by the simple free electron model under the assumption that the S-O scattering originates from the same atom in the whole region of ρ . We suggest a picture that the annealing in air brings the change of the S-O scattering atom from light to heavy atoms, namely, oxygen to indium and/or zinc atoms.