Transport properties of defect-controlled Bi₂Te₃ single crystals: fingerprint of surface Dirac electrons

Heon-Jung Kim^{*a*}, Ki-Seok Kim^{*b*}, Mun Dae Kim^{*c*}, S.-J. Lee^{*d*}, J.-W. Han^{*a*}, A. Ohnishi^{*d*}, M. Kitaura^{*d*}, M. Sasaki^{*d*}, A. Kondo^{*e*}, and K Kindo^{*e*}

^aDepartment of Physics, College of Natural Science, Daegu University, Gyeongbuk 712-714, Republic of Korea

^bAsia Pacific Centre for Theoretical Physics, POSTECH, Pohang, Gyeongbuk 790-784, Republic of Korea ^cInstitute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

^dDepartment of Physics, Faculty of Science, Yamagata University, Kojirakawa, Yamagata 990-8560 Japan ^eInstitute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 Japan

We report synthesis and characterization by electrical transport measurements of defect-controlled Bi_2Te_3 single crystals. By adding extra Te, which reduces naturally-formed antisite defects, we have succeeded in growing Bi_2Te_3 single crystals, covering heavily hole-doped to heavily electron-doped metals, where intermediate region corresponds to the topological insulator. We have carefully investigated p-doped, insulating, and n-doped samples by magnetoresistance and Hall effect measurements up 55 T. These data are quantitatively compared with a single Dirac theory, revealing nontrivial character of the insulating samples. We will also discuss these results based on surface and bulk conduction channels.