Influence of microstructure on the thermal properties of Si_3N_4/BN fiber monoliths.(LT26)

J. Mucha^{*a*}, A. Jeżowski^{*a*}, H. Misiorek^{*a*}, I.A. Smirnov^{*b*}, and L.S. Parfeneva^{*b*}

^aInstitute for Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland ^bIoffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

Detailed measurements and studies of thermal conductivity, $\kappa(T)$, heat capacity and $C_p(T)$ of Si₃N₄, BN polycrystalline ceramic samples and Si₃N₄/BN fiber monoliths (FM) in the directions [0], [90], [0/90] and [0/45] of fibers have been performed between 4 K and 300 K. Sound velocity in the same samples has been also measured in the temperature range 3.5 - 77 K. Our studies indicate that at low temperatures (5-25 K) phonons dominate the scattering and phonons in Si,N4/BN [0], [90], [0/90] and [0/45] fiber monoliths are scattered primarily by dislocations. This effect has not not observed in ceramic Si₃N₄ and BN samples. The experimental data have been used for an estimation of the values of the phonon mean free path in polycrystalline Si₃N₄ and BN and of an effective one in the Si₃N₄ [0] FM .