Two-Terminal Spin Filter Using Quantum Dot with Spin-Orbit Interaction in Magnetic Field

T. Yokoyama and M. Eto

Faculty of Science and Technology, Keio University, Yokohama, Japan

The spin injection in semiconductors is an important issue for the spin-based electronics, "spintronics." We propose an efficient spin filter utilizing a quantum dot (QD) with spin-orbit interaction. In the absence of magnetic field, a QD must be connected to three or more leads (or conduction channels) for the spin filter.¹ We show that the conventional geometry of two-terminal QD works as a spin filter in a magnetic field. First, we examine a QD with two energy levels, $|1\rangle$ and $|2\rangle$, as a minimal model. The levels are mixed by the SO interaction, $\langle 2|H_{\rm SO}|1\rangle \equiv i\boldsymbol{\sigma} \cdot \boldsymbol{h}_{\rm SO}$, and the magnetic field, $(|e|/2m^*)\langle 2|(\boldsymbol{p}\cdot\boldsymbol{A}+\boldsymbol{A}\cdot\boldsymbol{p})|1\rangle \equiv ib$, where \boldsymbol{A} is the vector potential. The spin-dependent conductance is given in an analytical form around current peaks of the Coulomb oscillation where the electron-electron interaction can be neglected. When an unpolarized current is injected to the QD from a lead, the spin-polarized current is ejected to the other lead. The spin polarization is enhanced to ~ 80% by the resonant tunneling if the magnetic field is tuned to be $b \sim |\boldsymbol{h}_{\rm SO}|$. Second, a realistic model for the QD and tunnel barriers is made by discretizing the space.² The efficiency of the QD spin filter is evaluated by the numerical calculation.

¹M. Eto and T. Yokoyama, J. Phys. Soc. Jpn. **79**, 123711 (2010). ²T. Ando, Phys. Rev. B **44**, 8017 (1991); T. Yokoyama and M. Eto, Phys. Rev. B **80**, 125311 (2009).