Electrical transport properties of single-crystal Bi2Te3 nanowires

M.L. Tian^{a, b}, J. Wang^a, M. Singh^a, and M.H.W. Chan^a

^aCenter for Nanoscale Science and Department of Physics, Penn State University, University Park, PA16802, USA

^bHigh Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China.

Single-crystal Bi2Te3 nanowires of 55 nm and 220 nm in diameters were fabricated by template-assisted electrochemical deposition. The electrical transport properties of the nanowires in the temperature range 1.8-300 K were measured by contact with FIB-deposited nonsuperconducting Pt or superconducting W-electrodes. When the individual wire is contacted with W-electrodes, a series of exotic quasi-periodic oscillations were observed and the amplitude of the oscillations was unusually intensified near 3.5 K below the Tc, 4.5 K of W-electrodes. When the wire is contacted with nonsuperconducting Pt electrodes, a series of significant magnetoresistance oscillations were observed in 55 nm wire under perpendicular magnetic field but not seen in parallel field.