Preservation of bipartite pseudo-entanglement in solids using dynamical decoupling

Ya Wang,¹ Xing Rong,¹ Pengbo Feng,¹ Wanjie Xu,¹ Bo Chong,¹ Ji-Hu Su,¹ Jiangbin Gong,² and Jiangfeng Du^{1,*}

¹Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China ²Department of Physics and Centre for Computational Science and Engineering,

National University of Singapore, 117542, Singapore

A crucial challenge for future quantum technologies is to protect fragile entanglement against environment-induced decoherence. Here we demonstrate experimentally that dynamical decoupling can preserve bipartite pseudo-entanglement in phosphorous donors in a silicon system. In particular, the lifetime of pseudo-entangled states is extended from 0.4 μ s in the absence of decoherence control to 30 μ s in the presence of a two-flip dynamical decoupling sequence.

PACS numbers: 03.67.Pp, 03.65.Yz, 76.30.Mi

* Electronic address: djf@ustc.edu.cn