Coexistence of Topological Order and Quantum Well States on Topological Insulators

Chaoyu Chen¹, Shaolong He¹, Wentao Zhang¹, Lin Zhao¹, Haiyun Liu¹, Xiaowen Jia¹, Daixiang

Mu¹, Shanyu Liu¹, Junfeng He¹, Yingying Peng¹, Aiji Liang¹, Guodong Liu¹, Ya Feng¹, Zhuojin

Xie¹, Xiaoli Dong¹, Jun Zhang¹, Xiaoyang Wang², Qinjun Peng², Zhimin Wang², Shenjin

Zhang², Feng Yang², Chuangtian Chen², Zuyan Xu², Zhong Fang¹, Xi Dai¹, X. J. Zhou¹

¹Beijing National Laboratory for Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

² Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

(Dated: Dec 15, 2010)

High-resolution Laser-based angle-resolved photoemission spectroscopy (Laser-ARPES) measurements have been carried out on topological insulators Bi₂Se₃ and Bi₂Te₃. Intrinsic hexagonal Fermi surface was observed and topological order protected by time-reversal symmetry (TRS) persisted even the samples were cleaved in air and stay at room temperature. Moreover, quantum well states were observed in air-cleaved Bi₂Te₃. This conformation of topological order lays the foundation for future applications of topological insulators, and the coexistence of quantum well states and topological order inspires further research both in physical and industrial field.