Low Temperature and High Magnetic Field Ellipsometry System

L. C. Li^{*a*}, S. K. Su^{*b*}, **Y. W. Suen**^{*c*,*d*}, J. Y. Wu^{*b*}, H. R. Kuo^{*c*}, Y. T. Sung^{*d*}, and C. P. Lee^{*b*}

^aCenter for Nano Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. ^bDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan. ^cDepartment of Physics and Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan.

^dNational Nano Device Laboratories, Hsinchu, Taiwan.

We report the design and implementation of a spectral ellipsometry system for samples placed under a low temperature (LT) (≤ 4.2 K) and high magnetic field (≤ 14 T) environment. Besides the light source (a Ti-sapphire laser at 700 - 1000 nm wavelength), readout and controlling electronics, the main structure of the system is integrated into an insert to fit an Oxford standard low-loss dewar with a 14-T superconducting magnet with a 50-mm bore. The insert has an optical head containing the polarizer and the rotating analyzer at room temperature (RT), a sample stage with a two-axis piezoelectric goniometer, and a 1.6-m long framework bridging the head and sample stage. After passing the polarizer, the laser beam is guided to the sample stage at LT; it is first reflected by a dielectric mirror before reaching the sample and the outgoing beam from the sample is then reflected to the analyzer at RT by a second dielectric mirror. All three reflections have a 60° incident angle and the same incident plane. To manifest the function and the sensitivity of this system, the differences of high-field ellipsometry parameters between an intrinsic GaAs substrate and a MBE-grown layer at 4.2 K are demonstrated.