Electron tunneling measurements in atomic scale gap filled with liquid ${}^4\mathrm{He}$ below $4.2\mathrm{K}$ **K. Ienaga**^a, T. Yokota^a, N. Nakashima^a, Y. Inagaki^a, T. Kawae^a, and H. Tujii^b ^aDepartment of Applied Quantum Physics, Kyushu University, Fukuoka, Japan ^bDepartment of Education, Kanazawa University, Kanazawa, Japan Recently, it has become possible to investigate the electrical property of the atomic-sized metallic contacts by atomic-sized tip, e.g. STM and mechanical controllable break junction (MCBJ). By using MCBJ technique, one can prepare two symmetrical atomic-sized metallic electrodes and control the gap of the two electrodes precisely by piezo-electronic force. In this presentation, we report the tunneling spectroscopy investigation in atomic scale gap filled with liquid ⁴He. In order to assure the filling of liquid ⁴He between the gap, the following experimental procedure was carried out. We construct a cryostat with a inner vacuum chamber inside the vacuum jacket for the thermal isolation. MCBJ apparatus is installed in the inner chamber with a flexible bellow. After filling liquid ⁴He below ^{4.2} K, Au electrical electrodes was stretched by the mechanical force generated by piezo device. We observed the increase of the tunnel conductance through liquid ⁴He compared to that in the vacuum environment.