Intensified Magneto-Resistance by Rapid Thermal Annealing in Magnetite (Fe_3O_4) Thin Film on SiO₂ Glass Substrate

H. Kobori^{*a*}, A. Hoshino^{*a*}, A. Yamasaki^{*a*}, A. Sugimura^{*a*}, T. Taniguchi^{*b*}, T. Horie^{*c*}, Y. Naitoh^{*c*}, and T. Shimizu^{*c*}

^aDepartment of Physics, Konan University, Kobe, Japan

^bDepartment of Physics, Osaka University, Osaka, Japan

^cNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

We have observed large magneto-resistance (MR) intensified by rapid thermal annealing (RTA) in magnetite (Fe₃O₄) thin film (MTF) on SiO₂ glass substrate. The MTF was produced by the RF magnetron sputtering method (RF-MSM). The electrical resistivity (ER) of as-grown MTF's (AG-MTF's) showed the Mott's variable range hopping behavior, which indicates that AG-MTF's are amorphous-like. Although the MR ratio of bulk single crystal of magnetite is very small except around the Verwey transition temperature (VTT), that of AG-MTF's is moderately large below room temperature. Due to the RTA of AG-MTF's using the infrared image furnace, the MR ratios of MTF's were drastically enhanced, especially by the annealing around the Curie point (585°C). Furthermore the ER of MTF's treated by RTA (RTA-MTF's) showed a jump around the VTT, which implies the high crystallinity of RTA-MTF's. The MTF's made by the RF-MSM are composed of nano-sized magnetite particles (NMP's). By the RTA of MTF's around the Curie point, the magnetic moments of NMP's are mutually randomized . As a result, the MR ratios of MTF's are drastically increased by the RTA, on the spin dependent scattering.