Quantum Phase Transition Induced by Chemical Substitution in the valence fluctuating System α -YbAlB₄

K. Kuga^{*a*}, Y. Karaki^{*a*, *b*}, Y. Matsumoto^{*a*}, and S. Nakatsuji^{*a*}

^aInstitute for Solid State Physics, University of Tokyo, Chiba, Japan ^bFaculty of Education, University of the Ryukyus, Okinawa, Japan

The Yb-based heavy fermion system, α -YbAlB₄, has a noncentrosymmetric crystal structure, while the structure of the isostoichiometric system, β -YbAlB₄ is centrosymmetric¹. β -YbAlB₄ is a rare example of the Yb based heavy fermion systems that shows pronounced non-Fermi-liquid behaviors and a superconducting transition at 80 mK under ambient pressure and field^{2,3,4}. On the other hand, α -YbAlB₄ at low temperatures is well fit to a Fermi liquid type description⁴. Both α and β -YbAlB₄ are valence fluctuating systems with the valence of Yb^{2.73+} and Yb^{2.75+}, in spite of showing Kondo lattice behaviors⁵.

We have succeeded in substituting Fe for Al in α -YbAlB₄, and found a magnetic order at 10 K by magnetic susceptibility measurements. We will discuss the thermodynamic and transport properties in the vicinity of quantum phase transitions found in α -YbAl_{1-x}Fe_xB₄, compairing with β -YbAlB₄.

¹R. T. Macaluso, et al, Chemistry of Materials **19**, 1918 (2007).

²S. Nakatsuji, et al, Nature Physics 4, 603 (2008).

³K. Kuga, et al, Physical Review Letters **101**, 137004 (2008).

⁴Y. Matsumoto, et al, Science **331**, 316 (2011).

⁵M. Okawa, et al, Physical Review Letters **104**, 247201 (2010).