Theoretical Description of Motional Averaging in a Superconducting Qubit

M. Silveri^a, K. S. Kumar^b, J. Li^b, J.-M. Pirkkalainen^b, J. Tuorila^a, M. A. Sillanpää^b, P. J. Hakonen^b, G. S. Paraoanu^b, and E. Thuneberg^a

^aDepartment of Physics, University of Oulu, Finland

^bLow Temperature Laboratory, School of Science, Aalto University, Finland

In a superconducting qubit, the energy splitting of the two quantum states can be controlled accurately with e.g. magnetic flux or voltage. In addition, the energy splitting can be measured with a weak excitation field i.e. by using spectroscopy. Motivated by these we study the absorption spectrum of a superconducting qubit, whose energy splitting is randomly jumping between the discrete values $\hbar(\omega_0 \pm \delta)$. We derive the absorption spectrum by solving the master equation and averaging over the Markovian stochastic fluctuations of the energy splitting. The spectrum is studied as a function of the average jumping rate Ω , which, together with the amplitude δ , characterizes the jumping process. When the jumping rate is small with respect to the amplitude ($\Omega \ll \delta$), the qubit absorbs energy at frequencies $\omega_0 \pm \delta$. In the opposite limit ($\Omega \gg \delta$), the absorption occurs only at the average frequency ω_0 . This phenomenon is known as motional averaging in NMR, but, to our knowledge, it has not been studied before in a single artificial atom. We have studied the effect by making numerical simulations based on quantum trajectories. We show that the motional averaging phenomenon can be observed in a parameter range that is experimentally realizable in a circuit QED system consisting of a superconducting transmon qubit and a superconducting quarter-wave length coplanar waveguide.