Superconducting Proximity Effect And Conductance Anomalies in $Sn-Bi_2Se_3$ Junctions

F. Yang^a, Y. Ding^a, F.M. Qu^a, J. Shen^a, J. Chen^a, Z.C. Wei^b, Z.Q. Ji^a, G.T. Liu^a, J. Fan^a, C.L. Yang^a, T. Xiang^b, and L. Lu^a

^aDaniel Chee Tsui Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing, China ^bInstitute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

We have investigated the conductance spectra of $\text{Sn-Bi}_2\text{Se}_3$ single junction device down to 250 mK and in different magnetic fields. A double-gap structure was observed at the center of the conductance spectra. With the sharpening of the small gap at lower temperatures, a zero-bias conductance peak occurred. This phenomena would reflect the formation of a proximity effect induced new superconducting state at the interface. The new state was found to be competing with the s-wave superconductivity in Sn electrodes, demonstrating presumably an unconventional pairing symmetry. A broad region with enhanced conductance was also observed below T_c , which extends well beyond the superconducting gap of Sn. So far, the origin of this structure is not clear.