Parallel field induced novel phenomena in a weakly interacting 2D electron gas

Xiaoqing Zhou^a, B. Schmidt^a, L.W. Engel^b, C. Proust^c, G. Gervais^a, L.N. Pfeiffer^d, and K.W. West^d

^aDepartment of Physics, McGill University, Montreal, H3A 2T8, Canada

^bNational High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 USA

^cLaboratoire National des Champs Magnetiques Intenses, Toulouse, 31400 France

^dDepartment of Electrical Engineering, Princeton University, Princeton NJ 08544 USA

Here we report observation of parallel field induced novel phenomena in a weakly interacting and ultra clean 2DEG system. At low temperature, the parallel field is found to induce a nonmonotonic colossal magnetoresistance, which is enhanced by a factor of ~300 and shows no saturation at up to 45 T¹. More interestingly, its temperature dependence is strongly anisotropic and nonmonotonic: in the configuration $I \parallel B$, it evolves from metallic (*i.e.*, $\frac{dR_{xx}}{dT} > 0$) to insulator-like (*i.e.*, $\frac{dR_{xx}}{dT} < 0$) below 10 K with increasing field, but the resistance remains much smaller than the resistance quantum $\frac{h}{e^2}$ even in the "insulator" regime²; on the other hand, when $I \perp B$, it retains features of metallic phonon scatterings below 10 K and above 40 K, but develops a resistivity saturation in-between with increasing field. We attribute these phenomena to the non-trivial magneto-orbital coupling effect, which might drive the system from 2D to quasi-3D, as well as from the quantum regime (*i.e.*, $T \ll T_F$) to the classical regime (*i.e.*, $T \gg T_F$).

 1 Xiaoqing Zhou et al., Phys. Rev. Lett. **104**, 216801 (2010). 2 Xiaoqing Zhou et al., arXiv:cond-mat/1103.349 (2011).