Decay and generation of entanglement in coupled, driven systems with bipartite decoherence

J. Li and G. S. Paraoanu

Low Temperature Laboratory, Aalto University School of Science, P.O. Box 15100, FI-00076 AALTO, Finland

In a bipartite system subject to decoherence from two separate reservoirs, entanglement is typically destroyed faster than decoherence of each single qubit. This effect is known as entanglement sudden death (ESD).¹ We analyze a system of two coupled qubits with classical on-resonance driving embedded in two different environments. In the secular limit, we obtain exact analytical results for the evolution of the system for several classes of two-qubit mixed initial states.² In non-secular limit, surprisingly however, in a certain region of the parameter space the existence of separate reservoirs can also have a beneficial entangling effect: the system can end in a stationary state characterized by a finite degree of entanglement.³

¹T. Yu and J. H. Eberly, Phys. Rev. Lett. **93**, 140404 (2004).
²J. Li and G. S. Paraoanu, Eur. Phys. J. D **56**, 255-264 (2010).

³J. Li and G. S. Paraoanu, New J. Phys. **11**, 113020 (2009).