Experimental demonstration of motional averaging in a transmon

J. Li^{*a*}, M. Silveri^{*b*}, K. S. Kumar^{*a*}, J.-M. Pirkkalainen^{*a*}, J. Tuorila^{*b*}, M. A. Sillanpää^{*a*}, P. J. Hakonen^{*a*}, E. Thuneberg^{*b*}, and G. S. Paraoanu^{*a*}

^aLow Temperature Laboratory, Aalto University School of Science, P.O. Box 15100, FI-00076 AALTO, Finland

^bDepartment of Physics, University of Oulu, FI-90014 Oulu, Finland

When the transition frequency of a two-level quantum system is randomly jumping between two values $\pm \delta$, the shape of this system's spectrum is dependent on the average jumping frequency Ω . For $\Omega^2 \ll \delta^2$, there are two spectrum lines with the same linewidth 4Ω and a separation 2δ ; for $\Omega^2 \gg \delta^2$, there is only one spectrum line with a linewidth δ^2/Ω . This phenomenon is known as motional averaging in NMR.¹ We observe this phenomenon (see also ²) experimentally in a circuit QED³ system which consists of a transmon qubit⁴ and a superconducting coplanar waveguide (CPW) resonator. With nonrandom (square and sinusoidal) modulations of transmon's transition frequency, we also observe Landau-Zener-like interference pattens. The experimental data is in good agreement with numerical simulations.

¹A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, 1961).

²D. Gunnarsson *et al.*, Phys. Rev. Lett. **101**, 256806 (2008).

³A. Wallraff *et al.*, Nature (London) **431**, 162 (2004).

⁴J. Koch *et al.*, Phys. Rev. A **76**, 042319 (2007).