On the low vibrational states seen in the heat capacity of incommensurate $ThBr_4$

G. Remeny^{*a*}, S. Sahling^{*a*, *b*}, K. Biljakovića ^{*a*, *c*}, D. Starešinić ^{*c*}, E. Lorenzo^{*a*}, and P. Monceau^{*a*}

^aInstitut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France ^bTU Dresden, Institut für Festkörperphysik, D-01062, Germany ^cInstitute of Physics, 10001 Zagreb, P.O.B. 304, Croatia

We report on the thermodynamic investigation of the low vibrational states of the truly incommensurate (IC) 3D compound $ThBr_4$, unique among other dielectrics for the lack of lock-in transition. Heat capacity measured in the T-range from 140 mK to 25 K demonstrates the glasslike anomalous behavior with the power-law contribution below 1 K and the C_p/T^3 bump above. We find both features being consequences of the phasons and the amplitudon, the typical IC-excitations in agreement with existing neutron investigation of these excitations. Ultimately, our analysis shows that there must be a low-energy gap in phason dispersion of about 10 GHz, what is considerably lower than the experimental uncertainty of the neutron data.