The temperature dependece of Hall mobility of the oxide thin film In_2O_3 -ZnO

K. Yamada^a, B. Shinozaki^a, K. Yano^b, and H. Nakamura^b

^aDepartment of Physics, Kyushu University, Fukuoka, Japan

^bAdvanced Technology Research Laboratories, Idemitu Kosan Co., Ltd, Chiba, Japan

We report that temperature dependence of Hall mobility of the strongly disordered films In₂O₃-ZnO. We made targets by mixing In₂O₃ with ZnO at the ratio $0 \sim 4$ %wt. Sputtering those targets on glass substrate by DC magnetron method, amorphous films with 25 nm thickness were obtained. By annealing at $T = 150 \sim 350^{\circ}$ C in the air, these films were crystallized and oxygen defect decreased and the conductance decreased. We obtained polyline films with conductivity 0.2mS/m ~ 300 S/m. These conductivity changes due to environment such as light and gas. The grain size $\sim 20nm$ of films was measured by scanning electron microscopy. In the temperature range $T = 90 \sim 300$ K, we measured the Hall effect of these fims. The density of electron was $4 \times 10^{18} \sim 7 \times 10^{23}$ m⁻³ at the room temperature. The Hall mobility μ_H shows the thermal-activation-like temperature dependence $\mu_H \propto exp(E_B/k_BT)$. Where E_B is activation energy. By fitting, we obtained $E_B = 17 \sim 67meV$.