Time-dependent universal conductance fluctuations in metal oxide nanowires due to mobile defects

Juhn-Jong Lin^a, A. S. Lien^a, P. Y. Yang^a, L. Y. Wang^b, and C. S. Chu^b

^aInstitute of Physics, National Chiao Tung University, Hsinchu 30010, Taiwan ^bDepartment of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

Time-dependent universal conductance fluctuations (UCF) are observed in single RuO₂ nanowires (\sim 50–100 nm in diameter and a few micrometers long) at cryogenic temperatures.¹ The fluctuations persist up to unprecedentedly high temperatures of \sim 10 K. Their root-mean-square fluctuation amplitudes increase with decreasing temperature, reaching a fraction of e^2/h at temperatures below \sim 2 K. These fluctuations are shown to originate from scattering of conduction electrons with rich amounts of mobile defects in artificially synthesized metal oxide nanowires. Furthermore, time-dependent UCF characteristics in both one-dimensional saturated and unsaturated regimes are identified, in quantitative consistency with existing theoretical predictions.² In another case of single IrO₂ nanowires where the mobile defects are less vigorous, time-independent UCF as a function of varying magnetic fields are clearly observed. The variation in the fluctuation amplitude with temperature can be understood in terms of current theoretical concepts, but a quantitative explanation is still lacking.

¹A. S. Lien, L. Y. Wang, C. S. Chu, and J. J. Lin, to be published.

²S. Feng, in *Mesoscopic Phenomena in Solids*, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, 1991).