Viscous and Acoustic Damping on Tuning Forks Oscillating in Liquid Helium-4

M. Človečko^{*a*}, S.N. Fisher^{*a*}, G. Foulds^{*a*}, D. Garg^{*a*}, E. Guise^{*a*}, **D. Schmoranzer**^{*b*}, L. Skrbek^{*b*}, and V. Tsepelin^{*a*}

^aDepartment of Physics, Faculty of Science and Technology, University of Lancaster, United Kingdom ^bFaculty of Mathematics and Physics, Charles University in Prague, Czech Republic

We present measurements of the dissipative forces on tuning forks, oscillating in both normal fluid and in superfluid ⁴He, due to viscous drag and acoustic emission. The measurements were made over a temperature range from 1.5 K to 4.2 K. Arrays of several tuning forks were investigated. Each fork has prongs of width 75 μ m and thickness 90 μ m, but the prong length varies from 0.7 mm to 3.5 mm so that their fundamental mode of vibration covers a wide frequency range (6-200 kHz). The forks were also driven in their first harmonic mode to extend the frequency range up to 600 kHz. We observe a clear crossover in the behavior: viscous drag dominates at low frequencies whilst acoustic emission dominates at higher frequencies. The dissipative forces are compared quantitatively with available theoretical models.^{1,2} Acoustic emission provides a limiting factor on the practical use of tuning forks for studying fluid properties.

¹M. Blažková, D. Schmoranzer, L. Skrbek, and W. F. Vinen, Phys. Rev. B **79**, Issue 5, 054522 (2009)
²D. Schmoranzer, M. La Mantia, G. Sheshin, *et al.*, J. Low Temp. Phys. **163**, Issue 5-6, in print (2011).