Magnetocaloric Properties of Single Crystalline $YbTiO_3$ with Second Order Phase Transition

Yantao Su^a, Yu Sui^a, Jinguang Cheng^b, Xianjie Wang^a, Yang Wang^a, and Wanfa Liu^c

^aCenter for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China

^bTexas Materials Institute, University of Texas at Austin, Austin, Texas, 78712, USA

^cDalian Institute of Chemical Physics, Dalian, 116023, People's Republic of China

Magnetic entropy change and refrigerant capacity in applied magnetic fields up to 5 T have been investigated in the temperature range of 10-90 K for the single crystalline YbTiO₃. The sample was prepared through the floating zone method. The maximal magnetic entropy changes at the second-order magnetic phase transition temperature T_C (~42 K) are about 2.47 and 5.25 J kg⁻¹ K⁻¹ under 1.5 and 5 T, respectively. The magnetic entropy change is related to the sharp magnetization jump, attributed to the lattice parameters change just at the Curie temperature. The magnetic entropy change for YbTiO₃ can be well described by a phenomenological universal curve behavior. The field dependence of the magnetic entropy change can be expressed as $\Delta S_M = H^n$. At the Curie temperature $n(T_C) = 0.633$ for YbTiO₃ single crystal. The field dependence of the relative cooling power (*RCP*) can also be expressed as RCP = $H^{1+1/\delta}$. For YbTiO₃ single crystal $\delta = 4.95$. The theoretical analysis of the relation between $n(T_C)$ and the critical exponents suggests that the critical behavior of YbTiO₃ belongs to the Heisenberg model. This was also confirmed by the heat capacity and thermal conductivity measurement.