A new SQUID-based magnetometer for temperatures below 1 K implementing an extended motion piezo-motor for the sample movement

I. $\check{\mathbf{Z}}\mathbf{ivkovi}\check{\mathbf{c}}^a$, J. Piatek^b, I. Levati $\check{\mathbf{c}}^a$, and H. M.^b

^aInstitute of Physics, POB 304, HR-10 000 Zagreb, Croatia ^bLaboratory for Quantum Magnetism, EPFL, CH-1015 Lausanne, Switzerland

Here we present a novel design of a magnetometer for a very low temperature environment below 1 K, intended to be used in dilution refrigerators. We have employed a piezo-motor with an extended range of motion (20 mm) for the movement of the sample through the pickup coils of the magnetometer. We have succeeded in thermally decoupling the piezo-motor from the mixing chamber and the sample.