Development of Tunnel Junction Micro-SQUID Magnetometer for Investigation of Single-Molecule Magnets

Masamichi Saitoh^a, Hiroshi Ebina^a, Hiroki Ohshio^b, and Youiti Ootuka^a

 a Institute of Physics and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

We have developed tunnel junction micro-SQUID magnetometer for the precise investigation of single-molecule magnets (SMMs). The magnetometer can be operated in magnetic field up to 1.3 T. The Joule heat associated with the measurement is extremely small (less than 2 fW). This value is 10^7 times smaller than the conventional micro-SQUIDs with Dayem bridge Josephson junction. ¹ By using the tunnel junction micro-SQUID magnetometer, the quantum tunneling of magnetization of Fe₈ SMM was reproduced as the stepwise magnetization curve.

¹W. Wernsdorfer, Adv. Chem. Phys. **118**, 99 (2001).

^bInstitute of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan