Detection of Single Electrons or Photons using a Superconducting Nanowire

 $\mathbf{M.~Rosticher}^a$, F.R. Ladan^a, J.P. Maneval^a, S.N. Dorenbos^b, T. Zijlstra^b, T.M. Klapwijk^b, V. Zwiller^b, A. Lupascu^d, and G. Nogues^c

^aLaboratoire Pierre Aigrain, ENS, France

^bKavli Institute of Nanoscience, Delft University, The Neterlands

^cInstitut Neel, CRNS, Grenoble France

^dInstitute of Quantum Computing, University of waterloo, Canada

We report the detection of single electrons by a 6 nm-thick, 100 nm-wide, Nb0.7Ti0.3N strip deposited on a SiOx/Si substrate, already described as a low-noise Superconducting Single Photon Detector ¹. When operating around 8 K, and biased slightly below the critical current, a meander-shaped device proves able to count the single keV electrons issued from the cathode of a scanning electron microscope (SEM) with an efficiency approaching unity. It is also possible to map the electron detectivity as well as the photon detectivity on the same device. A clear correlation between the two measurements is observed, with a superior spatial resolution though (around 100 nm) for the SEM mapping.

¹S.N. Dorenbos et al, Appl. Phys. Lett. **93**, 131101 (2008).