Sample 3D Magnetometer for a Dilution Refrigerator

S. Uchaikin^{*a*}, A. Likhachev^{*a*}, F. Cioata^{*a*}, J.C. Petroff^{*a*}, C. Rich^{*a*}, P. Spear^{*a*}, H. Sanghera^{*b*, *a*}, I. Singh^{*b*, *a*}, and X. Han^{*c*, *a*}

^aD-Wave Systems Inc., Burnaby, BC, Canada

^bDepartment of Engineering Physics, University of British Columbia, Vancouver, BC, Canada ^cSchool of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

In this report, we describe a development of a three dimensional system for measurements of magnetic field at a wide temperature range of 300K-4K. The system is based on 8th AMR sensors and allows to control magnetic environment in a dilution refrigerator during cool down of a superconducting chip. With a low noise signal processing electronics and special sensor saturation circuit, a magnetic induction resolution below of 1 nT was achieved.