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Abstract 

In this paper we introduce a set of Characteristic Basis Functions (CBFs) for efficient representa-
tion of the currents induced on the elements in a 2D array of plasmonic nanorods. The use of these 
functions leads to a relatively small and well-conditioned matrix, only a 2×2 size for the normally 
incident plane wave. We show that the shape of the current can be found by solving a relatively 
small truncated array, 11×11 array for instance, and the level of the current can be computed by 
taking advantage of the fast convergence of the Galerkin testing integral in spectral domain cir-
cumventing the oscillatory behaviour of the solution in spatial domain. 

 

1. Introduction 

Arrays of plasmonic nanorods have potential applications in nanoantennas, sensors, focusing, and 
guiding and solar cells systems [i.e. 1, 2]. Solving an array of plasmonic nanorods comprising of dis-
persive and negative-permittivity materials by using conventional EM simulation packages are often 
inaccurate or highly time- and memory-consuming. This is because of the fine meshing required for 
solving the large aspect ratio rods and the fact that a large array must be solved. The periodic Green’s 
function approach, typically used in the context of integral equation formulation, is known to suffer 
from a slow convergence rate [3, 4], which is undesirable. In this paper, we utilize the Characteristic 
Basis Function Method (CBFM) [5] to efficiently model the nanorods, followed by a spectral domain 
to enhance the convergence. The CBF method is a time- and memory-efficient technique for charac-
terizing both the isolated and array-type problems. In this paper, we show that only two CBFs are suf-
ficient for characterizing the current induced on each nanorod element. To determine the weight coef-
ficients of the CBFs, we introduce a novel technique, which is based on finding the shape of the 
macro-CBF by first solving a 2×2 matrix equation, derived by using Galerkin’s testing on the central 
element for a 11×11 truncated array. Next to find the level of that macro-CBF, we apply Galerkin in 
the spectral domain by using the Parseval theorem, which, in turn, serves to speed up the convergence 
of the partial sums considerably. The numerical scheme, described above, is very general and robust 
for simulating the scattering characteristics of periodic complex metamaterials. 

 
2. Formulation and simulations 

Fig. 1 depicts an array of plasmonic nanorods in x-y plane, illuminated at broadside by a vertically po-
larized incident plane wave. The unit cell is a plasmonic nanorod of length L=300 nm, radius a=10 
nm, and its material is silver, which is characterized in the optical regime by using the Drude model: 

 )(/2
dprr jffff   , where fp and fd are plasma and damping frequencies. The method begins by 

solving for the polarization currents on the isolated nanorod for a number of different incident plane 
waves by representing the induced currents in terms of a few Macro Basis Functions (MBFs), accord-
ing to Fig. 2. For the range of frequencies of interest here, 100-500 THz, we have found that it is suffi-
cient to use just 5 MBFs to reach to a convergent solution [6]. 
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Next, a Singular Value Decomposition (SVD) is applied to the obtained solutions in order to remove 
the redundancy and to generate a set of high level MBFs known as the Characteristic Basis Functions 
(CBFs) that are longitudinal in nature, i.e., they only vary along the y-direction. We see from Fig. 3 
that at f=400 THz only the first three CBFs possess the singular values greater than than -20 dB. 
Moreover, CBF#2 is an odd function (see Fig. 3(b)), which does not contribute to the induced current 
for the normal incidence case being considered here. Hence, the CBFs#1 and #3 are sufficient to char-
acterize the current induced on the single element. We call the CBF#1 and CBF#3 as s1 and s2. 

 

                                                                                                                                        

                                                                                                                                     

 

  

                                                                                                                                            

Next, we compute the truncated summation of the scattered field on the central unit-cell due to the 
elements of the 2-D array surrounding it, and then we test the electric field with CBFs (Galerkin’s test-
ing) that we have derived earlier to derive a small-size matrix equation. For the array problem, because 
of the normal incidence, we assume that all the elements have the same currents 2211 scscI   , where 

c1 and c2 are unknown coefficients, to be determined. The equation for polarization current of the cen-
tral element is as follows: 

)/())(1( 2
0 aIEEj si

r    (1)

In (1), Ei is the incident and Es is the y-component scattered field due to the all of the elements in the 
array. To find the unknown coefficients c1 and c2, we need to test (1) by s1 and s2 and solve the resul-
tant 2×2 matrix. Because we have infinitely many elements, we truncate the array by using the rings 
shown in Fig. 4, i.e., at stage #m we need to consider the truncated (2m-1)×(2m-1) array including the 
rings #1, #2,..., #m to find the corresponded coefficients c1(m) and c2(m). Such a computation has been 
performed and illustrated in Fig. 5. It is worth mentioning that for the relatively large number of rings 
the computation of Es is time consuming. moreover, as depicted in Fig. 5, the convergence is slow and 
oscillatory due to owing to the1/R dependence of the fields computed byrelatively far rings. We ob-
serve from Fig. 5 that, after a few stages, the maxima and minima of these coefficients are essentially 
synchronized as we vary the number of rings, implying that the shape of macro CBF, comprising of a 
linear combination of the two CBFs, remains unchanged, and that only its level fluctuates as the size 
of the truncated array is increased. We can take advantage of this fact and avoid the computation of 
the mutual coupling contributions of the elements for relatively large number of rings. Specifically we 
have found that we can find the shape of the macro CBF by solving the 2×2 matrix equation corre-
sponded to only 6 rings, i.e., for an 11×11 truncated array. Furthermore, to determine the level of the 
macro CBFs, we can take advantage of the fast convergence of the Galerkin integral in spectral do-
main by using the Parseval theorem. Indeed, the Galerkin integral in the spectral domain is turned out 
to be a series comprising of pq-Floquet modes corresponding to xp /2  and  yq /2  Floquet wave 

numbers, where p and q are integers, and Λx and Λy are the periodicities along the x- and y-axis, re-

(a) (b)
(a) (b) 

Fig. 1: (a) 2D array of plasmonic nano-
rods (b) unit-cell 

Fig. 2: (a) Solving the isolated element for different 
incident plane waves. (b) Representation of polariza-
tion current by N triangular sinusoidal MBFs. 

Fig. 4: Ring concept to apply Galerkin 
testing on the central element. 

Fig. 3: Characteristic Basis Func-
tions. (a) Magnitude (b) Phase (c) 
SVD values. 

(a) 

(b) 

(c) 
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spectively, as shown in Fig. 1(a). The magnitude and phase of the macro-CBF , which is the 

weighted sum of the CBFs# 1 and #3, are plotted in Fig. 6, as functions of the number of the truncated 
Floquet modes. We note that the convergence in the spectral domain does not depict the oscillatory 
behaviour similar to one encountered in the spatial domain summation (see Fig. 5). Moreover the 
speed of convergence in spectral domain is about 10 times faster than that in the spatial domain. Our 
next step is to take advantage of the closed form Floquet modes, to find the reflection coefficient of 
the array in a manner illustrated in Fig. 7. For Λx=200 nm and Λy=450 nm, only the Floquet mode cor-
responded to pq=00 contributes in the visible region is needed to compute the reflection coefficient, 
which can be expressed as: 

 yxI  /)0(
~

60  (2)

where )0(
~
I is the Fourier transform of the current at ky=0. The computation of the reflection coeffient 

takes only 7 minutes for 401 frequency samples depicted in Fig. 7, on a 2.2 GHz Intel Core(TM)2 Duo 
CPU machine. Additionally, the SVD computation consumes about 23 minutes for   9090  (see 
Fig. 2(a)) with 1 degree increment and all the 401 mentioned frequency samples. 

 

 

 

 

 

 

 

 

 

 
3. Conclusion 
In this work, a fast and efficient computational scheme for modelling array of plasmonic nanorods has 
been proposed. Each rod has been successfully represented with only a few physics-based basis func-
tions (CBFs). The periodicity has been accounted for by utilizing the ring concept, and Galerkin inte-
grals have been computed in the spectral domain. The technique is capable for characterizing large 
clusters of metamaterials because the use of the proposed method is shown to reduce the burden on 
both the CPU memory and time 
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Fig. 5: Coefficients corresponded 
to each CBF versus the ring #. (a) 
first CBF (b) second CBF. 

Fig. 6: Level of macro CBF in-
terms of truncation number in 
the series comprising of Floquet 
modes. (a) Magnitude (b) Phase. 

(a) 

(a) 

(b) 
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Fig. 7: Reflection coefficient of 
the infinite array of plasmonic 
nanorods over an optical range of 
frequency. 
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