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Abstract

The perfect electromagnetic conductor (PEMC) is a paradigmatic medium in electromagnetics. It
was introduced, using differential forms, as a truly isotropic medium. In this paper we will show,
using spacetime algebra, that the PEMC is just an extreme case of a more general class of Tellegen
media that are truly isotropic — that of Minkowskian isotropic media (MIM). A PEMC is shown to
be a MIM that corresponds to an ideal electromagnetic conductor.

1. Introduction
The perfect electromagnetic conductor (PEMC) is a very important medium in electromagnetics as it
generalizes the concepts of perfect electric conductor (PEC) and perfect magnetic conductor (PMC)

[1]-[3]. A PEC is a medium where E =0 and B =0 and a PMC a medium where D=0 and H =0.
As a biisotropic medium is characterized by the constitutive relations
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a PEC corresponds to £ =c0 and g =0 whereas a PMC corresponds to £=0 and g =o0. In both
cases — for both the PEC and the PMC — parameters £ and £ may have any values. A PEMC, on the
other hand, is a medium where both conditions H+ME =0 and D—MB =0 are required to be
valid. Then, a PEC corresponds to M =+ and a PMC to M =0. However, what actually character-

izes a PEMC is the fact that it is a truly isotropic medium: its isotropy is a Lorentz invariant property —
in the sense that the medium is actually isotropic for any inertial observer (i.e., in terms of special rela-
tivity). Accordingly, we will call such a medium a Minkowskian isotropic medium (MIM). The fol-
lowing question then arises: is the PEMC the most general case of a MIM? The main goal of this pa-
per is to answer that question. Our answer, however, is negative: we will show that a PEMC is just a
very special case of a MIM and that the associated condition eu—&£¢ =0 is actually wrong.

The main difficulty presented by the definition of a PEMC stems from (1): a PEMC corresponds to the

case where [1]

ge etk é (M 1 ]

=q v Q—>o. (2)
(«/80%4 %u} 1 Y™

This leads to infinite values for the four parameters (&, 1, &, ¢) unless M =0 or M =oo. In this pa-
per we will show that the most general case of a MIM corresponds actually to
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where (q, M) are the two scalars that define the medium. Only when g — oo do we get the very spe-
cial (and ideal) case of a PEMC corresponding to (2). One should stress, however, that

e=(ai+pE)|ae, w=ljag, E=¢=rk==flax With (a, B:)=M (4/d,~1,). (4)
This means that a MIM is a Tellegen medium with two parameters (., B ) such that

N =eu—EC=ep—x" =1 nl=clu=of +pF =M*(nf} +15 /7). (5)

Hence, for the particular case of a PEMC (with q-—> o), one should also have nZ=1 and

&/ u=pZ =n:M?. Accordingly, the statement that, in a PEMC, one has ¢u=&¢ as in equation (19)

of [1], in equation (21) of [2] or in p. 26-6 of [3] is wrong. In fact, the phase velocity (and the group
velocity, if there is no dispersion; and also the energy velocity, in there are no losses) inside a MIM is

vp:c/nozc/a/g,u—zczzc. (6)

For a truly isotropic medium, then, one should have n, =1 and V,=C for all inertial observers. A

value n, =0, corresponding to x* = &x, would violate — for a dispersionless and lossless medium —

the foundations of special relativity. In fact, the calculation of the determinant in (2) can lead to erro-
neous conclusions if one does take into account that — in terms of a PEMC — it is an indeterminate of
the form co—oo which, according to (3) and (4), reduces to

A= sopy(sp=-5C) = (sp=x?) [ =0}/ =(af) /B . (A=Y, ™

For a PEMC one has g — o and o — 0, though, qo =—f:/c = 1,M according to (4).

2. Defining a MIM through spacetime algebra

The discovery of the PEMC, by Lindell and Sihvola, is intimately linked to the formulation of elec-
tromagnetics with differential forms as developed by Lindell in [4]. In terms of differential forms and
using the notation of [1]-[4] the spacetime constitutive relation of a PEMC corresponds to ¥ =M ®@.
A MIM is a more general medium: its spacetime constitutive relation corresponds, using the same no-
tation, to ¥ =M®+ N *"®, where *® is the Hodge dual of ® [5]. However, we prefer the more
simple formalism of spacetime algebra (STA) [6] adopted in [7] and [8]. The Euclidean three-
dimensional version of geometric algebra was also used in [9] and [10]. In terms of STA and using the
same notation of [6] and [8], the spacetime constitutive relation of a MIM is the following:

G =(1/m)(aF+p5:1F)=M[F/(qc)-IF] (8)
with H+ME=(M/q)B and D-MB=[M/(qc)|E. This is a manifestly covariant equation be-

cause a, and B, are scalars, F=c"E+IB is the Faraday bivector, G=D-+c"IH is the Maxwell
bivector and 1 is the unit quadrivector with 1> =—1. Hence, IF=—B+c'IE is the Clifford dual of
F. If e,eR" is a given inertial observer, with ej =1 (STA corresponds to Clifford algebra C¢, ),
then E=Ee, where EeR"® is an anti-Euclidean (relative) vector. Likewise, one has: B=Be,,
D=De, and H=He,. If {e,,e,,€,,€,} is an orthonormal basis for the quadratic space R**, with
e; =—€f =—e;=—e; =1, then l=eyee,e,. One should stress that (E,B,D,H) are observer-
-dependent (i.e., relative) bivectors whereas (F, G) are observer-independent (i.e., absolute) bivec-
tors. So, in fact, from (8) we readily derive the Gibbs-Heaviside form of the constitutive relations for a
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MIM, i.e., our former equation (3). One should note that, in (2)-(5), parameters ¢, 1, &, &, &, 1, o, P

are dimensionless. Furthermore, a MIM becomes an electromagnetic conductor (EMC) whenever the
electromagnetic admittance

|7=aF/770=M/(qC)| (9)
is such that |y| « 1, thereby making H+ ME~0 and D—M B =0 in (8). In fact, (8) can be written
as G=yF-MIF.APEMC corresponds to an EMC when y —-0 or G=-MIF.

3. Tellegen moving media
For a general Tellegen medium one has £ =¢ =« in (1). A MIM corresponds to (3); a PEMC corre-

sponds to (2). For a MIM, as well as for the special case of a PEMC, one has su—x* =1. For a mov-

ing Tellegen medium, as seen by any inertial observer v =ce,, the manifestly covariant spacetime
constitutive relation is

Gzi[iexp((arv)F—/cGIF}, ©=In(n,), ne=t, k==, (10)
o | s H

In (10) we have introduced the operator r, (F)=—VvFv such that r; =1. This spacetime constitutive
relation corresponds to a bianisotropic medium. For n, =1 or ® =0, (10) reduces to (8) as expected.

4. Conclusion
We have shown that a MIM is the most general class of truly isotropic media, i.e., where the isotropic

characterization is completely observer-independent. To characterize a MIM two parameters (aF : ﬂF)
or (g, M) are needed according to (8). Hence, for any MIM (including a PEMC), one should always

have n? =eu—&¢ =1. Actually, an EMC is a MIM that becomes a PEMC when the admittance y in
(9) vanishes, i.e., when g — . Although a PEMC acts as a boundary for electromagnetic waves any
actual EMC, with y =0, can support electromagnetic waves thus making relevant the value of n,.
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