Is the perfect electromagnetic conductor the most general truly isotropic medium?

C. R. Paiva¹, S. A. Matos²

¹DEEC – IT, Instituto Superior Técnico, Av. Rovisco Pais, 1
1049-001 Lisboa, Portugal
Fax: + 351–8418472; email: <u>carlos.paiva@lx.it.pt</u>
²DCTI – IT, Instituto Superior de Ciências do Trabalho e da Empresa - IUL, Avenida das Forças
Armadas, 1649-026 Lisboa, Portugal
Fax: + 351–8418472; email: <u>sergio.matos@lx.it.pt</u>

Abstract

The perfect electromagnetic conductor (PEMC) is a paradigmatic medium in electromagnetics. It was introduced, using differential forms, as a truly isotropic medium. In this paper we will show, using spacetime algebra, that the PEMC is just an extreme case of a more general class of Tellegen media that are truly isotropic – that of Minkowskian isotropic media (MIM). A PEMC is shown to be a MIM that corresponds to an ideal *electromagnetic conductor*.

1. Introduction

The perfect electromagnetic conductor (PEMC) is a very important medium in electromagnetics as it generalizes the concepts of perfect electric conductor (PEC) and perfect magnetic conductor (PMC) [1]-[3]. A PEC is a medium where $\vec{E} = 0$ and $\vec{B} = 0$ and a PMC a medium where $\vec{D} = 0$ and $\vec{H} = 0$. As a biisotropic medium is characterized by the constitutive relations

$$\begin{pmatrix} \vec{D} \\ \vec{B} \end{pmatrix} = \begin{pmatrix} \varepsilon_0 \varepsilon & \sqrt{\varepsilon_0 \mu_0} \xi \\ \sqrt{\varepsilon_0 \mu_0} \zeta & \mu_0 \mu \end{pmatrix} \begin{pmatrix} \vec{E} \\ \vec{H} \end{pmatrix}$$
(1)

a PEC corresponds to $\varepsilon = \infty$ and $\mu = 0$ whereas a PMC corresponds to $\varepsilon = 0$ and $\mu = \infty$. In both cases – for both the PEC and the PMC – parameters ξ and ζ may have any values. A PEMC, on the other hand, is a medium where both conditions $\vec{H} + M\vec{E} = 0$ and $\vec{D} - M\vec{B} = 0$ are required to be valid. Then, a PEC corresponds to $M = \pm \infty$ and a PMC to M = 0. However, what actually characterizes a PEMC is the fact that it is a truly isotropic medium: its isotropy is a Lorentz invariant property – in the sense that the medium is actually isotropic for any inertial observer (i.e., in terms of special relativity). Accordingly, we will call such a medium a Minkowskian isotropic medium (MIM). The following question then arises: is the PEMC the most general case of a MIM? The main goal of this paper is to answer that question. Our answer, however, is negative: we will show that a PEMC is just a very special case of a MIM and that the associated condition $\varepsilon \mu - \xi \zeta = 0$ is actually wrong.

The main difficulty presented by the definition of a PEMC stems from (1): a PEMC corresponds to the case where [1]

$$\begin{pmatrix} \varepsilon_0 \varepsilon & \sqrt{\varepsilon_0 \mu_0} \xi \\ \sqrt{\varepsilon_0 \mu_0} \zeta & \mu_0 \mu \end{pmatrix} = q \begin{pmatrix} M & 1 \\ 1 & 1/M \end{pmatrix}, \quad q \to \infty.$$
⁽²⁾

This leads to infinite values for the four parameters $(\varepsilon, \mu, \xi, \zeta)$ unless M = 0 or $M = \infty$. In this paper we will show that the most general case of a MIM corresponds actually to

$$\begin{pmatrix} \varepsilon_0 \varepsilon & \sqrt{\varepsilon_0 \mu_0} \xi \\ \sqrt{\varepsilon_0 \mu_0} \zeta & \mu_0 \mu \end{pmatrix} = q \begin{pmatrix} \left(1 + q^{-2} c^{-2}\right) M & 1 \\ 1 & 1/M \end{pmatrix}, \quad \text{with} \quad \begin{cases} c = \left(\varepsilon_0 \mu_0\right)^{-1/2} \\ \eta_0 = \left(\mu_0/\varepsilon_0\right)^{1/2} \end{cases}$$
(3)

where (q, M) are the two scalars that define the medium. Only when $q \rightarrow \infty$ do we get the very special (and ideal) case of a PEMC corresponding to (2). One should stress, however, that

$$\varepsilon = \left(\alpha_F^2 + \beta_F^2\right) / \alpha_F, \quad \mu = 1/\alpha_F, \quad \xi = \zeta = \kappa = -\beta_F / \alpha_F \quad \text{with} \quad \left(\alpha_F, \beta_F\right) = M\left(\mu_0 / q, -\eta_0\right). \quad (4)$$

This means that a MIM is a Tellegen medium with two parameters (α_F, β_F) such that

$$n_0^2 = \varepsilon \mu - \xi \zeta = \varepsilon \mu - \kappa^2 = 1, \quad \eta^{-2} = \varepsilon / \mu = \alpha_F^2 + \beta_F^2 = M^2 \left(\eta_0^2 + \mu_0^2 / q^2 \right).$$
(5)

Hence, for the particular case of a PEMC (with $q \rightarrow \infty$), one should also have $n_0^2 = 1$ and $\varepsilon/\mu = \beta_F^2 = \eta_0^2 M^2$. Accordingly, the statement that, in a PEMC, one has $\varepsilon \mu = \xi \zeta$ as in equation (19) of [1], in equation (21) of [2] or in p. 26-6 of [3] is wrong. In fact, the phase velocity (and the group velocity, if there is no dispersion; and also the energy velocity, in there are no losses) inside a MIM is $v = c/n = c/\sqrt{\varepsilon \mu - \kappa^2} = c$ (6)

$$v_p = c/n_0 = c/\sqrt{\varepsilon\mu - \kappa^2} = c.$$
(6)

For a truly isotropic medium, then, one should have $n_0 = 1$ and $v_p = c$ for all inertial observers. A value $n_0 = 0$, corresponding to $\kappa^2 = \varepsilon \mu$, would violate – for a dispersionless and lossless medium – the foundations of special relativity. In fact, the calculation of the determinant in (2) can lead to erroneous conclusions if one does take into account that – in terms of a PEMC – it is an indeterminate of the form $\infty - \infty$ which, according to (3) and (4), reduces to

$$\Delta = \varepsilon_0 \mu_0 \left(\varepsilon \mu - \xi \zeta \right) = \left(\varepsilon \mu - \kappa^2 \right) / c^2 = n_0^2 / c^2 = \left(q^2 \alpha_F^2 \right) / \beta_F^2 \quad \therefore \quad \Delta = 1/c^2 \,. \tag{7}$$

For a PEMC one has $q \to \infty$ and $\alpha_F \to 0$, though, $q\alpha_F = -\beta_F/c = \mu_0 M$ according to (4).

2. Defining a MIM through spacetime algebra

The discovery of the PEMC, by Lindell and Sihvola, is intimately linked to the formulation of electromagnetics with differential forms as developed by Lindell in [4]. In terms of differential forms and using the notation of [1]-[4] the spacetime constitutive relation of a PEMC corresponds to $\Psi = M \Phi$. A MIM is a more general medium: its spacetime constitutive relation corresponds, using the same notation, to $\Psi = M\Phi + N^*\Phi$, where ${}^*\Phi$ is the Hodge dual of Φ [5]. However, we prefer the more simple formalism of spacetime algebra (STA) [6] adopted in [7] and [8]. The Euclidean three-dimensional version of geometric algebra was also used in [9] and [10]. In terms of STA and using the same notation of [6] and [8], the spacetime constitutive relation of a MIM is the following:

$$\mathbf{G} = (1/\eta_0) (\alpha_F \mathbf{F} + \beta_F \mathbf{I} \mathbf{F}) = M [\mathbf{F}/(qc) - \mathbf{I} \mathbf{F}]$$
(8)

with $\mathbf{H} + M \mathbf{E} = (M/q) \mathbf{B}$ and $\mathbf{D} - M \mathbf{B} = \left[M/(qc^2) \right] \mathbf{E}$. This is a manifestly covariant equation because α_F and β_F are scalars, $\mathbf{F} = c^{-1}\mathbf{E} + \mathbf{IB}$ is the Faraday bivector, $\mathbf{G} = \mathbf{D} + c^{-1}\mathbf{IH}$ is the Maxwell bivector and \mathbf{I} is the unit quadrivector with $\mathbf{I}^2 = -1$. Hence, $\mathbf{IF} = -\mathbf{B} + c^{-1}\mathbf{IE}$ is the Clifford dual of \mathbf{F} . If $\mathbf{e}_0 \in \mathbb{R}^4$ is a given inertial observer, with $\mathbf{e}_0^2 = 1$ (STA corresponds to Clifford algebra $\mathcal{C}\ell_{1,3}$), then $\mathbf{E} = \vec{E}\mathbf{e}_0$ where $\vec{E} \in \mathbb{R}^{0,3}$ is an anti-Euclidean (relative) vector. Likewise, one has: $\mathbf{B} = \vec{B}\mathbf{e}_0$, $\mathbf{D} = \vec{D}\mathbf{e}_0$ and $\mathbf{H} = \vec{H}\mathbf{e}_0$. If $\{\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is an orthonormal basis for the quadratic space $\mathbb{R}^{1,3}$, with $\mathbf{e}_0^2 = -\mathbf{e}_1^2 = -\mathbf{e}_2^2 = -\mathbf{e}_3^2 = 1$, then $\mathbf{I} = \mathbf{e}_0\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3$. One should stress that $(\mathbf{E}, \mathbf{B}, \mathbf{D}, \mathbf{H})$ are observerdependent (i.e., relative) bivectors whereas (\mathbf{F}, \mathbf{G}) are observer-independent (i.e., absolute) bivectors. So, in fact, from (8) we readily derive the Gibbs-Heaviside form of the constitutive relations for a MIM, i.e., our former equation (3). One should note that, in (2)-(5), parameters ε , μ , ξ , ζ , κ , η , α_F , β_F are dimensionless. Furthermore, a MIM becomes an *electromagnetic conductor* (EMC) whenever the *electromagnetic admittance*

$$\gamma = \alpha_F / \eta_0 = M / (qc)$$
(9)

is such that $|\gamma| \ll 1$, thereby making $\mathbf{H} + M \mathbf{E} \approx 0$ and $\mathbf{D} - M \mathbf{B} \approx 0$ in (8). In fact, (8) can be written as $\mathbf{G} = \gamma \mathbf{F} - M \mathbf{IF}$. A PEMC corresponds to an EMC when $\gamma \rightarrow 0$ or $\mathbf{G} = -M \mathbf{IF}$.

3. Tellegen moving media

For a general Tellegen medium one has $\xi = \zeta = \kappa$ in (1). A MIM corresponds to (3); a PEMC corresponds to (2). For a MIM, as well as for the special case of a PEMC, one has $\varepsilon \mu - \kappa^2 = 1$. For a moving Tellegen medium, as seen by any inertial observer $\mathbf{v} = c \mathbf{e}_0$, the *manifestly covariant* spacetime constitutive relation is

$$\mathbf{G} = \frac{1}{\eta_0} \left[\frac{1}{\eta_G} \exp(\Theta \mathbf{r}_{\mathbf{v}}) \mathbf{F} - \kappa_G \mathbf{I} \mathbf{F} \right], \qquad \Theta = \ln(n_0), \qquad \eta_G = \frac{\mu}{n_0}, \qquad \kappa_G = \frac{\kappa}{\mu}.$$
(10)

In (10) we have introduced the operator $\mathbf{r}_{\mathbf{v}}(\mathbf{F}) = -\mathbf{v}\mathbf{F}\mathbf{v}$ such that $\mathbf{r}_{\mathbf{v}}^2 = 1$. This spacetime constitutive relation corresponds to a bianisotropic medium. For $n_0 = 1$ or $\Theta = 0$, (10) reduces to (8) as expected.

4. Conclusion

We have shown that a MIM is the most general class of truly isotropic media, i.e., where the isotropic characterization is completely observer-independent. To characterize a MIM two parameters (α_F, β_F) or (q, M) are needed according to (8). Hence, for any MIM (including a PEMC), one should always have $n_0^2 = \varepsilon \mu - \xi \zeta = 1$. Actually, an EMC is a MIM that becomes a PEMC when the admittance γ in (9) vanishes, i.e., when $q \rightarrow \infty$. Although a PEMC acts as a boundary for electromagnetic waves any actual EMC, with $\gamma \neq 0$, can support electromagnetic waves thus making relevant the value of n_0 .

Acknowledgment

This work was partially funded by FCT - Foundation for Science and Technology, Portugal.

References

- [1] I.V. Lindell and A.H. Sihvola, Perfect electromagnetic conductor, *Journal of Electromagnetic Waves and Applications*, vol. 19, pp. 861-869, 2005.
- [2] A. Sihvola and I.V. Lindell, Perfect electromagnetic conductor medium, *Annalen der Physik (Berlin)*, vol. 17, pp. 787-802, 2008.
- [3] A. Sihvola and I.V. Lindell, Bianisotropic Materials and PEMC, in: *Theory and Phenomena of Metamaterials*, Chap. 26, edited by F. Capolino, Boca Raton, FL: CRC Press, 2009.
- [4] I.V. Lindell, *Differential Forms in Electromagnetics*, New York: Wiley and IEEE Press, 2004.
- [5] F.W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics, Boston: Birkhäuser, 2003.
- [6] C. Doran and A. Lasenby, *Geometric Algebra for Physicists*, Cambridge: Cambridge University Press, 2005.
- [7] C.R. Paiva and M.A. Ribeiro, Doppler shift from a composition of boosts with Thomas rotation: a spacetime algebra approach, *Journal of Electromagnetic Waves and Applications*, vol. 20, pp. 941-953, 2006.
- [8] M.A. Ribeiro and C.R. Paiva, Relativistic optics in moving media with spacetime optics, *European Physical Journal Applied Physics*, vol. 49. p. 33003, 2010.
- [9] S.A. Matos, M.A. Ribeiro, and C.R. Paiva, Anisotropy without tensors: a novel approach using geometric algebra, *Optics Express*, vol. 15, pp. 15175-15186, 2007.
- [10] S.A. Matos, C.R. Paiva, and A.M. Barbosa, Anisotropy done right: a geometric algebra approach, *European Physical Journal Applied Physics*, vol. 49, p. 33006, 2010.