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Abstract 

The perfect electromagnetic conductor (PEMC) is a paradigmatic medium in electromagnetics. It 

was introduced, using differential forms, as a truly isotropic medium. In this paper we will show, 

using spacetime algebra, that the PEMC is just an extreme case of a more general class of Tellegen 

media that are truly isotropic – that of Minkowskian isotropic media (MIM). A PEMC is shown to 

be a MIM that corresponds to an ideal electromagnetic conductor.   

 
1. Introduction 
The perfect electromagnetic conductor (PEMC) is a very important medium in electromagnetics as it 

generalizes the concepts of perfect electric conductor (PEC) and perfect magnetic conductor (PMC) 

[1]-[3]. A PEC is a medium where 0E   and 0B   and a PMC a medium where 0D   and 0H  . 

As a biisotropic medium is characterized by the constitutive relations 
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a PEC corresponds to     and 0   whereas a PMC corresponds to 0   and    . In both 

cases – for both the PEC and the PMC – parameters   and   may have any values. A PEMC, on the 

other hand, is a medium where both conditions 0H M E   and 0D M B   are required to be 

valid. Then, a PEC corresponds to M    and a PMC to 0M  . However, what actually character-

izes a PEMC is the fact that it is a truly isotropic medium: its isotropy is a Lorentz invariant property – 

in the sense that the medium is actually isotropic for any inertial observer (i.e., in terms of special rela-

tivity). Accordingly, we will call such a medium a Minkowskian isotropic medium (MIM). The fol-

lowing question then arises: is the PEMC the most general case of a MIM? The main goal of this pa-

per is to answer that question. Our answer, however, is negative: we will show that a PEMC is just a 

very special case of a MIM and that the associated condition 0    is actually wrong. 

The main difficulty presented by the definition of a PEMC stems from (1): a PEMC corresponds to the 

case where [1] 
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. (2) 

This leads to infinite values for the four parameters  , , ,     unless 0M   or M   . In this pa-

per we will show that the most general case of a MIM corresponds actually to 
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where  ,q M  are the two scalars that define the medium. Only when q  do we get the very spe-

cial (and ideal) case of a PEMC corresponding to (2). One should stress, however, that 

      2 2

0 0, 1 , with , ,F F F F F F F F M q                       . (4) 

This means that a MIM is a Tellegen medium with two parameters  ,F F   such that 

  2 2 2 2 2 2 2 2 2

0 0 01, F Fn M q                    . (5) 

Hence, for the particular case of a PEMC (with q ), one should also have 2

0 1n   and 
2 2 2

0F M     . Accordingly, the statement that, in a PEMC, one has    as in equation (19) 

of [1], in equation (21) of [2] or in p. 26-6 of [3] is wrong. In fact, the phase velocity (and the group 

velocity, if there is no dispersion; and also the energy velocity, in there are no losses) inside a MIM is 

 2

0pv c n c c      . (6) 

For a truly isotropic medium, then, one should have 0 1n   and pv c  for all inertial observers. A 

value 0 0n  , corresponding to 2  , would violate – for a dispersionless and lossless medium –  

the foundations of special relativity. In fact, the calculation of the determinant in (2) can lead to erro-

neous conclusions if one does take into account that – in terms of a PEMC – it is an indeterminate of 

the form   which, according to (3) and (4), reduces to 

      2 2 2 2 2 2 2 2

0 0 0 1F Fc n c q c                 . (7) 

For a PEMC one has q  and 0F  , though, 0F Fq c M      according to (4). 

 

2. Defining a MIM through spacetime algebra 
The discovery of the PEMC, by Lindell and Sihvola, is intimately linked to the formulation of elec-

tromagnetics with differential forms as developed by Lindell in [4]. In terms of differential forms and 

using the notation of [1]-[4] the spacetime constitutive relation of a PEMC corresponds to MΨ Φ . 

A MIM is a more general medium: its spacetime constitutive relation corresponds, using the same no-

tation, to M N Ψ Φ Φ , where Φ  is the Hodge dual of Φ  [5]. However, we prefer the more 

simple formalism of spacetime algebra (STA) [6] adopted in [7] and [8]. The Euclidean three-

dimensional version of geometric algebra was also used in [9] and [10]. In terms of STA and using the 

same notation of [6] and [8], the spacetime constitutive relation of a MIM is the following: 

      01 F F M qc       G F IF F IF  (8) 

with  M M q H E B  and  2M M qc  
 

D B E . This is a manifestly covariant equation be-

cause F  and F  are scalars, 1c F E IB  is the Faraday bivector, 1c G D IH  is the Maxwell 

bivector and I  is the unit quadrivector with 2 1 I . Hence, 1c  IF B IE  is the Clifford dual of 

F . If 4

0 e  is a given inertial observer, with 2

0 1e  (STA corresponds to Clifford algebra 1,3 ), 

then 
0EE e  where 0,3E  is an anti-Euclidean (relative) vector. Likewise, one has: 

0BB e , 

0DD e  and 0HH e . If  0 1 2 3, , ,e e e e  is an orthonormal basis for the quadratic space 1,3 , with 

2 2 2 2

0 1 2 3 1      e e e e , then 0 1 2 3I e e e e . One should stress that  , , ,E B D H  are observer-            

-dependent (i.e., relative) bivectors whereas  ,F G  are observer-independent (i.e., absolute) bivec-

tors. So, in fact, from (8) we readily derive the Gibbs-Heaviside form of the constitutive relations for a 
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MIM, i.e., our former equation (3). One should note that, in (2)-(5), parameters , , , , , , ,F F         

are dimensionless. Furthermore, a MIM becomes an electromagnetic conductor (EMC) whenever the 

electromagnetic admittance 

  0F M qc     (9) 

is such that 1 , thereby making 0M H E  and 0M D B  in (8). In fact, (8) can be written 

as M G F IF . A PEMC corresponds to an EMC when 0   or M G IF . 

 

3. Tellegen moving media 
For a general Tellegen medium one has      

in (1). A MIM corresponds to (3); a PEMC corre-

sponds to (2). For a MIM, as well as for the special case of a PEMC, one has 2 1   . For a mov-

ing Tellegen medium, as seen by any inertial observer 0cv e , the manifestly covariant spacetime 

constitutive relation is 

    0

0 0

1 1
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vG F IFr . (10) 

In (10) we have introduced the operator    v F vFvr  such that 2 1vr . This spacetime constitutive 

relation corresponds to a bianisotropic medium. For 0 1n   or 0 , (10) reduces to (8) as expected. 

 

4. Conclusion 
We have shown that a MIM is the most general class of truly isotropic media, i.e., where the isotropic 

characterization is completely observer-independent. To characterize a MIM two parameters  ,F F   

or  ,q M
 
are needed according to (8). Hence, for any MIM (including a PEMC), one should always 

have 2

0 1n     . Actually, an EMC is a MIM that becomes a PEMC when the admittance   in 

(9) vanishes, i.e., when q . Although a PEMC acts as a boundary for electromagnetic waves any 

actual EMC, with 0  , can support electromagnetic waves thus making relevant the value of 0n . 
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