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Abstract

In this paper we present a new formulation of the homogenization problem based on surface inte-
gral equations. The homogenization is based on the excitation of the structure with a macroscopic
source [1]. There is, however, a difference with respect to previous works, being related to the spatial
distribution of the excitation currents. In our formulation the whole response of the system to the
excitation is included in the definition of the effective permittivity, which accounts for spatial disper-
sion phenomena, and we prove that the homogenization problem can be reduced to the solution of a
system of surface integral equations.

1. Introduction

When characterizing a metamaterial as a continuum medium, a homogenization process is needed. Need-
less to say, it is very convenient to have such a description to ease theoretical modeling, thus avoiding the
computation of the full microscopic problem. Homogenization consists of the inference of the macro-
scopic properties of the medium from the response of a basic cell which, periodically repeated, builds
up the metamaterial. This is a challenging issue, and several attemps to tackle it have appeared in the
literature (for a review, see, e.g. [2]). Among them, only a few [1, 3] include the possibility of strong
spatial dispersion effects. However, these may be very relevant effects [4], non negligible for certain
metamaterials even in the extremely-long-wavelength limit [5]. Thus, although some features related to
non-locality can be included in a local model, as is the case of gyrotropy for weakly spatially disper-
sive media, a complete description of non-local effects is very desirable when extracting the effective
properties of metamaterials. In the present work, we present a homogenization scheme to obtain the
non-local effective permittivity of metamaterials composed by inclusions of arbitrary shape and elec-
tromagnetic properties periodically arranged in a lattice. In particular, we allow for the possibility of
studying metamaterials with magnetic inclusions and/or host medium, i.e., such that µ 6= 1.

2. Theoretical formulation

Let us assume that we know the geometry and material parameters (local and frequency dispersive) of a
given body occupying a volume V (enclosed by the surface Γ). We assume also that we fill the space R3
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by periodically arranging identical copies of that given body in a lattice, with unit cell Ω defined by the
primitive vectors ai (i = 1, 2, 3) and with volume Vcell, and the volume exterior to them Ṽ with a host
medium whose electromagnetic properties are also known. We consider an external current jext flowing
only in the volume Ṽ . It will, obviously, generate a response on the whole system. The macroscopic
properties in the long-wavelength limit can then be computed from suitable spatial averaging of the
microscopic fields distribution generated under such excitation. Following [1], for a given pair (ω,k),
the macroscopic spatially dispersive permittivity, ¯̄εeff(ω,k), will be computed by exciting the system
with an external current of the form jext = je,ave

ik·r, the amplitude je,av being a constant vector. Since
we want to compute the whole matrix ¯̄εeff , three linearly independent vectors je,av must be chosen.

It is well known that for a given microscopic field, E(r), the averaging procedure that preserves the form
of Maxwell’s equations is any of the form Emacro(r) =

∫
E(r−r′)f(r′)d3r′. In our work we will adopt

the equivalent to ideal low pass filtering, thus taking a test function such that:

f̃(k) =

{
1 : k ∈ B.Z.
0 : k /∈ B.Z.

which filters all spatial oscillations on the order of the unit-cell size. It is easy to prove that, if the
microscopic field is a Bloch mode asociated with k, which is ensured by the periodic character of the
system and by an excitation current of the form jext = je,ave

ikr, then the macroscopic field takes the
form of a plane-wave with wavevector k and amplitude Eav = (1/Vcell)

∫
Ω E(r)e−ikrd3r.

We have for our periodic system two sets of Maxwell’s equations, one for the volume Ṽ , which will
contain the external current, and another for the volumes Vj of the inclusions, where no external current
is present. It is straightforward to obtain the wave equations that the electric and magnetic fields must
satisfy in each region, with inhomogeneous terms, Fe,h, that are proportional to jext for E and to∇×jext
for H. These equations, together with the equation for the Green’s function associated with the operator
L = −εµω2

c2
+∇×∇, upon applying Green’s theorem in vectorial form to the quantity E ·L ¯̄G− ¯̄G ·LE,

will allow us to reduce the computation of the microscopic fields to the solution of a system of surface
integral equations.

3. Surface Integral Equations

Let us consider, for simplicity, that our system is composed by inclusions invariant along z-axis and
periodically arranged in the xy-plane with primitive vectors ai (i = 1, 2). Let’s consider also two
polarizations: (i) electric field directed along z (s-polarization or TE), (ii) magnetic field along z (p-
polarization or TM). Due to the specific geometry of the problem, no depolarization effects take place.
Let ψ = Ez = E (= Hz = H) represent the only non-zero component of the E (H) field in s-(p-)
polarization. Then it’s well known that applying Green’s theorem to the quantity E · L ¯̄G − ¯̄G · LE in
an arbitrary volume V ′, which is identified either with one of the volumes Vj or with Ṽ gives rise to the
following equations, obtained upon considering the following cases [6]:

ψin(r<) = − 1

4π

∫
Γ−
j

[ψin(Rj)
∂Gin

j (r<,Rj)

∂Nj
−Gin

j (r<,Rj)
∂ψin(Rj)

∂Nj
]dS, if r ∈ Vj and r′ → Γ−j (1)

0 = − 1

4π

∫
Γ−
j

[ψin(Rj)
∂Gin

j (r>,Rj)

∂Nj
−Gin

j (r>,Rj)
∂ψin(Rj)

∂Nj
]dS, if r ∈ Ṽ and r′ → Γ−j (2)

ψout(r>) = ψ(s)(r>) +
1

4π

∑
j

∫
Γ+
j

[ψout(Rj)
∂Gout

j (r>,Rj)

∂Nj
−Gout

j (r>,Rj)
∂ψout(Rj)

∂Nj
]dS,

if r ∈ Ṽ and r′ → Γ+
j (3)
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0 = ψ(s)(r<) +
1

4π

∑
j

∫
Γ+
j

[ψout(Rj)
∂Gout

j (r<,Rj)

∂Nj
−Gout

j (r<,Rj)
∂ψout(Rj)

∂Nj
]dS,

if r ∈ Vj and r′ → Γ+
j (4)

Here, r represents the observation point, r′ represents the source point and R = r′|Γ. Note that the
equations are different whether the source point approaches the surface from the exterior (r′ → Γ+

j ) or
the interior (r′ → Γ−j ) of the inclusion. Note also that only the scalar Green’s function, G, i.e., the field
due to a single point source in a homogeneous dielectric, appears in the equations. Simplification with
respect to the fully 3D case is only due to the specific geometry. The infinite summation over j is taken
over all the inclusions. ψ(s)

s,p represent the excitation field in the system, different for each polarization:

ψ(s)
s,p(r) =

∫
Ṽ
G(out)(r, r′)Fe,h(r′)d3r′ (5)

Equations (1)-(4) are, obviously, not independent. Only two of them are needed (we will use eqs.(3) and
(2)) and will be consistently solved by taking the limit r>< → r|Γ. Upon making use of the Bloch’s
behaviour of the fields, i.e. ψ(r + t) = eiktψ(r) with t =

∑
ciai where ci ∈ Z, we can “bring back”

the equations as to involve computations only in the unit cell by defining the periodic Green’s function:

Gp(r,R) =
∑
t

eiktGout(r,R + t) (6)

The same can be done with the excitation fields. It is then possible to make use of the continuity condi-
tions for the fields and their derivatives on the surface in order to solve Eqs.(2) and (3) self-consistently.
We end up with the system of integral equations to be solved for the magnetic (electric) field and its nor-
mal derivative on the surface for p-(s-)polarization. Once we know these terms, the fields are known in
every point of space, through eqs.(1)-(4). Therefore, defining a generalized averaged polarization vector
consistently with [1] and with the fact that there is magnetization at the microscopic level, i.e.,

Pg,av =
1

Vcell

∫
Ω

(ε− εout)E(r)e−ik·rd3r− 1

Vcell

k

ω
×

∫
Ω

(
µ

µout
− 1)H(r)e−ik·rd3r, (7)

we can find ¯̄εeff(ω,k) for every pair (ω,k), taking three lineraly independent je,av, and using the relation
(¯̄εeff − ε0¯̄I)Eav = Pg,av. The local constitutive parameters can be computed from the derivatives of the
nonlocal dielectric function with respect to the wave vector [1]. Numerical results will be presented and
the formalism for the full 3D problem will be delineated.
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