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Abstract

We give an overview of the issue of coupling between metamaterial elements, an important factor in
understanding and characterising their behaviour. We describe the well known Lagrangian model to
describe this interaction. We show how the interaction coefficients can be calculated, and illustrate
the importance of losses and fabrication errors in the tuning behaviour.

1. Introduction

The coupling between metamaterial elements is an important part of their response to the electromagnetic
field, which complicates their description by simple models. The near-field coupling between neighbour-
ing elements is a form of non-locality, which gives rise to spatial dispersion. From another perspective, if
we modify the arrangement of metamaterial elements, we can tune this local field coupling, thus it can be
regarded as in extra degree of freedom in the engineering of artificial composites. Many examples of such
engineering can be found in the literature, see for example [1, 2] and references therein. The best starting
point to describe coupling within a lattice is to consider a pair of neighbouring resonators. Although
this is a much simpler system than the full lattice, it still exhibits a surprising degree of complexity, and
contains much of the physics of the interaction problem.

2. Lagrangian description of a pair of resonators

A widely-used tool to describe a pair of resonators is the Lagrangian of a pair of coupled oscillators:
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where Qn(t) represent the amplitudes of the fundamental modes of each resonator. We write it here using
equivalent-circuit notation, but note that L and C should be interpreted as coefficients of stored energy
for the fundamental mode of the resonator [2]. The coupling between the resonators has both electric
κE and magnetic κM terms. After finding the corresponding dynamic equations, we find the following
solutions for the symmetric and anti-symmetric modes:

ωS = ω0

√
1 + κE
1 + κM

ωAS = ω0

√
1− κE
1− κM

.

This shows that the frequency splitting between the two modes is determined by competition between the
electric and magnetic interaction constants, which may be positive or negative depending on the relative
arrangement of the metamaterial elements.
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3. Calculating the interaction constants

In order to rigorously calculate the interaction constants, we developed a method [2] based on the ap-
proximation that the hybridised modes are superpositions of the dominant modes in each resonator, with
other modes being negligible. We start by noting that the terms in the Lagrangian correspond to the en-
ergy of the system. Since our resonant elements are closely spaced, by knowing the charge distribution
q(x) and current distribution j(x) we can find the energy in the quasi-static limit:

WE,mn =

∫
Vm

d3x

∫
Vn

d3x′
q(x)q(x′)

4πε0|x− x′|
, (4)

WM,mn =

∫
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d3x

∫
Vn

d3x′
µ0 j(x) · j(x′)

4π|x− x′|
. (5)

By comparing the relevant terms in the energy expressions, we can arrive at the the following expressions
for the interaction constants

κM =
WM,12

WM,11
κE =

WE,12

WE,11
. (6)

To illustrate the applicability of this method, we consider a pair of split rings in a broadside-coupled
orientation, as shown in Fig. 1. We increase the offset δa between them, and plot the corresponding
resonant frequencies. It can be seen that the full numerical results (background colour) agree very well
with the results from the Lagrangian model (lines).

Fig. 1: Resonant frequencies of a pair of rings as a function of offset between their centres, compar-
ing numerical results with those obtained from a Lagrangian model (solid - symmetric, dashed - anti-
symmetric.

4. The influence of losses and fabrication imperfections

In the experiments there will always be some small difference in the resonators due to fabrication im-
perfections. In addition, the theory developed so far has not included the influence of losses, neglecting
the typically strong radiation from the resonators, as well as ohmic dissipation. To illustrate the effect
on coupling, we consider a system of a pair of split-ring resonators (SRRs) rotated by angle θ about
their common axis, as reported in [3]. We modify our system of equations by introducing a dissipation
coefficient Γ and a detuning parameter δω. This results in the the following dispersion equation for the
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modes:

D(ω, θ) =
[
(ω0 + δω)2 + j2Γω − ω2

] [
(ω0 − δω)2 + j2Γω − ω2

]
−

[
κE(θ)ω

2
0 − κM (θ)ω2

]2
= 0 (7)

Using the theory of Morse critical points [4], we can study the properties of the function D(ω, θ) as we
increase the loss parameter Γ. As illustrated in Fig. 2, for low values of Γ the detuning δω causes a
repulsion of the modes. However, beyond some critical value of Γ, the crossing of modes is restored.
Thus losses are very important for understanding behaviour at critical points of the tuning dispersion.
For full details, see [3].
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Fig. 2: (a) Resonant frequencies and (b) absorption coefficients of a pair of coaxial rings when Γ =
1 × 10−3ω0, (c) Resonant frequencies and (d) absorption coefficients when Γ = 7 × 10−3ω0, showing
that losses restore the crossing. (e) Resonant frequencies and (f) absorption coefficients when losses are
increased to Γ = 2× 10−2ω0.

5. Conclusion

We have given an overview of coupling between metamaterial elements, and shown how this can be
described with a Lagrangian model. We presented a method for calculating the interaction coefficients,
and showed that losses and fabrication errors can have a significant impact on the tuning behaviour at
critical points of the dispersion curve.
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