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Abstract

Bandwidth is an important parameter in many metamaterial applications. It has been shown that
Herglotz functions and sum rules offer a powerful methodology to analyze the trade-off between
bandwidth and design parameters. Here, this approach is described for the temporal dispersion of
constitutive relations and high-impedance surfaces.

1. Introduction

Bandwidth is an important figure of merit in metamaterial applications such as high-impedance surfaces,
cloaking, lenses, and antennas. In this paper, Herglotz functions and sum rules are used to derive con-
straints on passive metamaterials [1, 2, 3]. The results are exemplified for the temporal dispersion of the
constitutive relations and the admittance of high-impedance surfaces.

Metamaterials are temporally dispersive,e.g., the permittivity and permeability depend on frequency.
The sum rule [1] relate weighted integrals of the constitutive parameter over all spectrum with the in-
stantaneous and static response of the material model. Various sum rules are presented in [1] that con-
strain the dispersion of the constitutive relations. The bounds constrain the temporal dispersion over a
frequency interval of the material parameter,e.g., how closeǫ(ω) can be to a constantǫm.

In [2], a sum rule for high-impedance surfaces was introduced. It relates frequency intervals having
impedance above an arbitrary threshold with the static properties of the structure. The sum rule is valid
for periodic structures composed by arbitrary dielectric and magnetic materials above a perfect conductor.
The sum rule is used to derive physical bounds that show how the bandwidth depends on thickness, angle
of incidence, polarization, and material properties.

2. Temporal dispersion for constitutive relations

The linear, causal, time translational invariant, continuous, isotropic, passive and non-magnetic constitu-
tive relations are

D(t) = ǫ0ǫ∞E(t) + ǫ0

∫ t

−∞

χee(t− t′)E(t′) dt′ such that0 ≤

∫ T

−∞

E(t) ·
∂D(t)

∂t
dt (1)

for all timesT and smooth fieldsE tending to zero ast → −∞. The Fourier transform (time dependence
e−iωt) of (1) gives the frequency domain modelD(ω) = ǫ0ǫ(ω)E(ω) where the symbolsD andE are
reused to denote the electromagnetic fields as functions of the angular frequencyω. Passivity restricts
the permittivity ǫ such thathǫ = ωǫ(ω) is a Herglotz function [4, 5],i.e., hǫ(ω) is holomorphic and
Imhǫ(ω) ≥ 0 in the upper half planeImω > 0, see [3, 4].
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In [1], it is shown that a permittivity (1) satisfies the sum rule

∫

∞

0
Im{h1(ω)} dω =

∫

∞

0

1

π
arg

(ω
(

ǫ(ω)− ǫm
)

− ω0∆

ω
(

ǫ(ω)− ǫm
)

+ ω0∆

)

dω =
ω0∆

ǫ∞ − ǫm
for ǫm < ǫ∞ (2)

from which the following bound on the temporal dispersion aroundǫ(ω) ≈ ǫm is derived

max
ω∈[ω1,ω2]

|ǫ(ω)− ǫm| ≥
B

1 +B/2
(ǫ∞ − ǫm)

{

1/2 lossy case

1 lossless case.
(3)

whereB = (ω2 − ω1)/ω0 andω0 = (ω1 + ω2)/2. The bound (3) shows that the deviation|ǫ(ω) − ǫm|
is proportional to the fractional bandwidthB and the differenceǫ∞ − ǫm.
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Fig. 1: Illustrations of the Drude model withν = {0.1, 0.001} and sum rule (2) forǫ ≈ 0. a) the
permittivity ǫ(ω) for ν = 0.1. c) integrandIm{h1(ω)} in the sum rule (2) forν = 0.1. bd) corresponding
cases forν = 0.001.

As an example consider the Drude modelǫ(ω) = 1 + 2/(−iω(ν − iω)) whereω is a dimensionless
frequency variable andν = {0.1, 0.001} see Fig. 1ab. It is close to zero forω ≈ ω0 ≈ 1.4. The sum
rule (2) is evaluated forǫm = 0 and∆ = 1/2. The integrand in (2) is depicted in Fig. 1cd, where it is
observed that it has most of its area in the region aroundω0 ≈ 1.4, i.e., in the region where|ǫ(ω)| ≤ ∆.
Moreover it is seen that the integral approaches a box as the losses decrease. The area of this box is
ω0∆/(ǫ∞ − ǫm) ≈ 0.71 that gives the bandwidth (width of the box) as the height is 1 in the lossless
case. The additional factor of 2 for the lossy case in the bound (3) comes from potentially reducing the
height of the box to1/2, see [1].

3. High-impedance surfaces

High-impedance surfaces are artificial surfaces synthesized from periodic structures above a ground
plane [6, 7]. The properties of the high-impedance surface depend on frequency, polarization, and angle
of incidence, and they have high impedance only over finite frequency bands [6, 7].
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In [2], a sum rule that relates wavelength intervals having admittance below an arbitrarythreshold with
the static properties of the structure was introduced,i.e.,

∫

∞

0
ReP∆(Y (λ)) dλ =

∫

∞

0

1

π
arg

(

jY (λ)−∆

jY (λ) +∆

)

dλ =
(

d+
γ

2A

)

2π∆, (4)

whereλ denotesthe wavelength,Y the admittance,d the height of the structure,γ the polarizability, and
A the unit cell area. The sum rule is used to derive the bound [2]

λ2 − λ1

d
≤ 4π∆

{

1 lossycase

1/2 lossless case.
where∆ = max

λ∈[λ1,λ2]
|Y (λ)| (5)

The sum rule (4) and bound (5) are illustrated in 2 for a mushroom structure [7]. The mushroom struc-
ture modeled as PEC. This implies that the admittance is lossless below the first grating lobe and the
polarizability can be negative [2].
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Fig. 2: Normalized admittanceY andcompositionP∆(Y ) with ∆ = {1/π, 1/(2π)} for a mushroom
structure withℓ = 10mm, w = 9mm, andd = 8mm. a)∆ = 1/π with the lossless boundλ2−λ1 ≤ 2.
b)∆ = 1/(2π) with the lossless boundλ2 − λ1 ≤ 1.

4. Conclusions

It is demonstrated that Herglotz functions and their associated integral identities (sum rules) provide a
powerful methodology to analyze passive metamaterials. The sum rules are used to construct physical
bounds that evaluate the maximal bandwidth of metamaterials.
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