# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ФИЗИКИ им. Л.В. Киренского СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Bygnur)

### ДУДНИКОВ ВЯЧЕСЛАВ АНАТОЛЬЕВИЧ

## ВЗАИМОСВЯЗЬ СТРУКТУРНЫХ, МАГНИТНЫХ И ЭЛЕКТРОННЫХ СВОЙСТВ В РЕДКОЗЕМЕЛЬНЫХ КОБАЛЬТИТАХ La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>.

01.04.11 – физика магнитных явлений

Диссертация на соискание ученой степени кандидата физико-математических наук

> Научный руководитель доктор физико-математических наук, профессор С.Г. Овчинников

Красноярск – 2014

## оглавление

|       | (                                                                                                  | стр. |
|-------|----------------------------------------------------------------------------------------------------|------|
| введн | ЕНИЕ                                                                                               | 4    |
| ГЛАВА | А 1. ОБЗОР ЛИТЕРАТУРЫ                                                                              | 8    |
| 1.1.  | Кобальтиты с химической формулой LnCoO <sub>3</sub> (Ln = лантан или                               |      |
| лант  | ганоид) и твердые растворы Ln <sub>1-x</sub> Ln <sub>x</sub> CoO <sub>3</sub> с изовалентным       |      |
| заме  | ещением                                                                                            | 8    |
| 1.2.  | Особенности электронных свойств составов LnCoO <sub>3</sub>                                        |      |
| (Ln : | $=$ La $\div$ Lu)                                                                                  | 17   |
| 1.3.  | Спиновые кроссоверы                                                                                | 21   |
| ГЛАВА | А 2. ПОЛУЧЕНИЕ ОБРАЗЦОВ И МЕТОДИКИ ИЗМЕРЕНИЯ                                                       | .29  |
| 2.1.  | Синтез поликристаллических образцов La <sub>1-x</sub> Gd <sub>x</sub> CoO <sub>3</sub> золь – гель |      |
| метс  | Одом                                                                                               | .29  |
| 2.2.  | Получение образцов методом твердофазного синтеза                                                   | .31  |
| 2.3.  | Исследование кристаллической структуры                                                             | .33  |
| 2.4   | Измерение теплоемкости                                                                             | 34   |
| 2.5.  | Измерение намагниченности                                                                          | 34   |
| 2.6   | Оценка кислородной нестехиометрии                                                                  | .35  |
| ГЛАВА | А З. СТРУКТУРНЫЕ СВОЙСТВА GdCoO3 и La1-xGdxCoO3                                                    | 36   |
| 3.1.  | Структурные свойства GdCoO <sub>3</sub> в широком интервале температур.                            |      |
| Cocy  | уществование высокоспинового и низкоспинового состояний в                                          |      |
| пром  | межуточной области температур                                                                      | .36  |
| 3.2.  | Аномально большое тепловое расширение GdCoO <sub>3</sub> в области                                 |      |
| cocy  | ществования двух спиновых состояний. Связь теплового расширения                                    | łИ   |
| флун  | ктуаций мультиплетности                                                                            | .43  |
| 3.3.  | Структурные свойства La <sub>1-x</sub> Gd <sub>x</sub> CoO <sub>3</sub>                            |      |
| (x =  | 0.0, 0.05, 0.1, 0.2, 0.5)                                                                          | .47  |

| ГЛАВА 4. МАГНИТНЫЕ, ЭЛЕКТРОННЫЕ СВОЙСТВА И                                    |  |  |
|-------------------------------------------------------------------------------|--|--|
| <b>ТЕПЛОЕМКОСТЬ GdCoO</b> <sub>3</sub>                                        |  |  |
| 4.1. Низкотемпературное магнитное поведение GdCoO <sub>3</sub> . Спин-флоп    |  |  |
| переход и магнитная фазовая диаграмма49                                       |  |  |
| 4.2. Высокотемпературное магнитное поведение GdCoO <sub>3</sub> . Вклад ионов |  |  |
| Со <sup>3+</sup> в магнитные свойства GdCoO <sub>3</sub> 56                   |  |  |
| 4.3. Молярная теплоемкость                                                    |  |  |
| 4.4. Сравнение экспериментальных данных с результатами LDA +                  |  |  |
| GTB – расчета электронной структуры и диэлектрической щели65                  |  |  |
| ГЛАВА 5. ЗАВИСИМОСТЬ СПИНОВОЙ ЩЕЛИ ОТ ОБЪЕМА ДЛЯ                              |  |  |
| COCTABOB La <sub>1-x</sub> Gd <sub>x</sub> CoO <sub>3</sub>                   |  |  |
| 5.1. Влияние химического давления на спиновую щель: оценка из                 |  |  |
| уравнения Берча-Мурнагана69                                                   |  |  |
| 5.2. Высокотемпературное магнитное поведение $La_{1-x}Gd_xCoO_3$ :            |  |  |
| определение температурно и концентрационно зависящей спиновой                 |  |  |
| щели73                                                                        |  |  |
| ВЫВОДЫ                                                                        |  |  |
| СПИСОК ЛИТЕРАТУРЫ                                                             |  |  |

#### введение

Неослабевающий интерес к изучению материалов со структурой перовскита на основе оксидов кобальта, продолжающийся в течение последних десятилетий, обусловлен несколькими причинами. С одной стороны, присущие данным перовскитам разнообразные физические явления, такие как переходы диэлектрик металл, конкуренция антиферромагнитного и ферромагнитного обменов, орбитальных взаимосвязь спиновых И степеней свободы И гигантское магнетосопротивление требуют понимания происходящих в этих веществах физических процессов. С другой стороны, эти материалы обладают высокой электронно-ионной проводимостью, что создает предпосылки для возможности применения этих материалов в качестве ТОТЭ (твердооксидный топливный элемент), кислородных мембран, катализаторов в процессах окисления метана и газовых сенсоров.

Физика явлений, протекающих в РЗМ-кобальтитах чрезвычайно разнообразна. Поэтому, не смотря на обилие исследовательского материала в научных журналах и тезисах научных конференций посвящённого кобальтитам редкоземельных элементов, многие вопросы в данный момент не решены до конца. Помимо проблемы спинового состояния ионов Co<sup>3+</sup>, интерес представляет также изучение вкладов в физические свойства кобальтитов, которые привносятся магнетизмом самих редкоземельных элементов. И хотя вопросы о природе и степени устойчивости электронных состояний в кобальт-оксидных соединениях изучаются достаточно давно, они до сих пор остаются предметом обсуждений и дискуссий.

В качестве модельных материалов для исследования роли сильных электронных корреляций, гибридизации, зарядового и спинового упорядочения в формировании электронных состояний могут рассматриваться соединения на основе LnCoO<sub>3</sub> (Ln = La  $\div$  Lu) с валентной формулой Ln<sup>3+</sup>Co<sup>3+</sup>O<sub>3</sub><sup>2-</sup>. В отличие от обычного фиксированного электронного состояния иона переходного металла, при котором полное квантовое число J, а также число электронов на 3d-орбиталях

имеют определённые значения, в этих оксидах ион кобальта может иметь различные спиновые состояния, находясь в низкоспиновом (LS, S = 0,  $t_{2g}^6 \varepsilon_g^0$ ), среднеспиновом (IS, S = 1,  $t_{2g}^5 \varepsilon_g^1$ ) или высокоспиновом (HS, S = 2,  $t_{2g}^4 \varepsilon_g^2$ ) состоянии. Флуктуации между этими состояниями, названные С.В. Вонсовским более 50 лет назад флуктуациями мультиплетности, приводят к особенностям магнитных, электрических и структурных свойств кобальтитов. К тому же, редкоземельным кобальтитам свойственно наличие дефицита по кислороду, приводящий к тому, что ион кобальта может иметь не только различные спиновые состояния при фиксированной валентности, но и различную валентность, что еще более усложняет изучение данных соединений.

В связи с вышеизложенным, <u>целью</u> данной работы является экспериментальное исследование структурных, магнитных и электронных свойств редкоземельных кобальтитов  $La_{1-x}Gd_xCoO_{3-\delta}$ , изучение их взаимосвязи и сравнение полученных результатов с результатами теоретических расчетов.

Для достижения поставленной цели надо решить следующие задачи:

1. Синтезировать серию высококачественных поликристаллических образцов  $GdCoO_{3-\delta}$  и  $La_{1-x}Gd_xCoO_{3-\delta}$  (x =0,0; 0,05; 0,1; 0,2; 0,5; 0,8) с минимальной нестехиометрией по кислороду.

2. Используя данные рентгеновской дифракции в широком интервале температур, исследовать возможное сосуществование различных доменов, соответствующих низкоспиновому и высокоспиновому состояниям ионов кобальта.

3. Для выяснения магнитного вклада от ионов гадолиния в GdCoO<sub>3</sub> провести измерения температурных и полевых зависимостей намагниченности GdCoO<sub>3</sub> при низких температурах.

4. Выполнить измерения магнитной восприимчивости в широком температурном диапазоне от 2 до 1000 К. Определить вклад от ионов Co<sup>3+</sup>. Сравнить экспериментально полученные данные с теоретическими расчетами.

5. Провести измерения молярной теплоемкости. Сравнить с температурнозависящей электронной структурой.

6. Исследовать тепловое расширение кристаллической решетки GdCoO<sub>3</sub> и проследить зависимость ее теплового расширения от величины спиновой щели и концентрации ионов Co<sup>3+</sup> в высокоспиновом состоянии.

7. Сделать оценку зависимости спиновой щели от объема элементарной ячейки в ряду LnCoO<sub>3</sub>, используя уравнение Берча – Мурнагана, и выяснить возможность управления величиной спиновой щели за счет изменения состава в твердых растворах La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>.

<u>Научная и практическая значимость.</u> Результаты настоящей работы внесут вклад в развитие существующих представлений о спиновых переходах ионов Co<sup>3+</sup> в редкоземельных кобальтитах и влиянии ионов гадолиния на формирование магнитных свойств образцов ряда La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>. Полученная информация поможет лучше понять фундаментальные процессы, происходящие в исследуемых материалах и может быть использована для решения практических задач, направленных на усовершенствование магнитных характеристик РЗМ-кобальтитов с изовалентным замещением.

Личный вклад автора заключается в получении образцов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> методом твердофазного синтеза, измерении намагниченности образцов В 300 К, высокотемпературном диапазоне ОТ ДО 900 анализе набора экспериментальных данных, определении вкладов от ионов гадолиния и кобальта в полную восприимчивость, определении спиновой щели и заселенностей спиновых состояний и сравнении экспериментальных данных с результатами теоретических расчетов, расчет влияния химического давления на спиновую щель в различных редкоземельных кобальтитах с использованием уравнение состояния Берча – Мурнагана.

Структура и объем работы.

Диссертация изложена на 88 страницах, включая 4 таблицы и 47 рисунков. Список литературы состоит из 76 наименований.

Работа состоит из 5 глав. **Первая глава** посвящена текущему состоянию исследований кобальтитов со структурой перовскита. Дается краткое описание их физических свойств и возможностей практического применения. Обсуждаются существующие на сегодняшний день проблемные вопросы, связанные с интерпретацией экспериментальных данных.

Во второй главе рассматриваются технологии получения исследуемых поликристаллических образцов, приводится описание исследовательских методик и установок, используемых при выполнении данной работы.

**Третья глава** содержит результаты структурных исследований и сравнение с результатами первопринципных GGA – расчетов. Показано сосуществование двух типов доменов, низкоспиновых и высокоспиновых, при промежуточных температурах 200K<T<700K. Обнаружено аномально большое тепловое расширение решетки в этом диапазоне температур.

В четвертой главе рассмотрены результаты магнитных измерений в широком диапазоне температур 4 – 1000 К исследуемых образцов, выделяется вклад ионов гадолиния и кобальта, и из сравнения с экспериментальными данными найдена температурная зависимость спиновой щели, представлены данные по молярной теплоемкости, проводится сравнение с результатами теоретических расчетов LDA + GTB величины диэлектрической щели и перехода диэлектрик – металл.

В пятой главе на основе уравнения Берча – Мурнагана сделана оценка зависимости спиновой щели от объема элементарной ячейки для ряда LnCoO<sub>3</sub> (Ln = лантан или лантаноид). Используя экспериментальные данные по La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0.5; 0.8; 1) для магнитной восприимчивости кобальта, определена концентрационная зависимость спиновой щели. Оба метода дали близкие значения спиновой щели.

## ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ

# 1.1. Кобальтиты с химической формулой LnCoO<sub>3</sub> (Ln = лантан или лантаноид) и твердые растворы Ln<sub>1-x</sub>Ln<sub>x</sub>CoO<sub>3</sub> с изовалентным замещением

Интерес к соединениям LnCoO<sub>3</sub> (Ln = La ÷ Lu) проявился благодаря необычной температурной зависимости магнитной восприимчивости LaCoO<sub>3</sub>. На рисунке 1 представлены зависимости  $\chi(T)$  и  $\chi^{-1}(T)$  из одной из ранних работ [1] и более поздней работы (рисунок 2) [2]. Аналогичные зависимости представлены во многих работах, в том числе и в работе [3].



Рисунок 1 . Графические зависимости магнитной восприимчивости и обратной магнитной восприимчивости от температуры для LaCoO<sub>3</sub> [1].



Рисунок 2. Температурная зависимость молярной магнитной восприимчивости  $\chi_m(T)$  в полях 1 T, 3 T и 5 T (охлаждение в нулевом поле) и в поле 3 T (охлаждение в поле 3 T) [2].

Из графиков видно (рисунок 1), что температурная зависимость магнитной восприимчивости имеет два широких максимума при  $T_1 \approx 100$  K и  $T_2 \approx 500$  K, а высокой температуре уменьшается. Дальнейшие при плавно активные исследования магнитных свойств других соединений ряда LnCoO<sub>3</sub> показали, что наблюдаются же особенности поведении магнитной для них те В восприимчивости, что и для LaCoO<sub>3</sub> [4-10], только аномалии в поведении χ(T) смещаются в область более высоких температур и сильнее сглажены.

Изучение структурных характеристик методами рентгеновской [11-17] и нейтронной дифракции [18,19] показывает, что элементарная ячейка LaCoO<sub>3</sub> при комнатной температуре имеет перовскитоподобную ромбоэдрически искаженную структуру (рисунок 3 (а)), относится к пространственной группе  $R3^-c$  и включает в себя две формульные единицы.



Рисунок 3. Кристаллическая структура LaCoO<sub>3</sub> (а) и схема возможного спинового упорядочения (б).

Кристаллическая решетка других соединений ряда LnCoO<sub>3</sub> (Ln = Pr ÷ Lu) относится к пространственной группе *Pbnm* и имеет различные ромбические искажения. Элементарная ячейка содержит четыре формульные единицы. Минимальные искажения характерны для состава NdCoO<sub>3</sub>, обладающего практически кубической структурой.

В соединениях  $LnCoO_3$  ( $Ln = La \div Lu$ ) редкоземельный ион  $Ln^{3+}$  находится в окружении несколько искаженного кубооктаэдра, состоящего из 12 ионов кислорода, а ион кобальта образует октаэдрические комплексы  $CoO_6$ .

Из-за уменьшения ионного радиуса редкоземельного элемента, с возрастанием порядкового номера лантаноида происходит так называемое «лантаноидное сжатие» - объем элементарной ячейки линейно уменьшается.

На рисунке 4 приведены данные измерений температурной зависимости коэффициента линейного теплового расширения α кристаллической решетки [13]. Видно, что редкоземельные кобальтиты проявляют аномальное тепловое расширение и структурные искажения немонотонно изменяются с температурой, а имеет максимумы, положение которых коррелирует с особенностями в поведении магнитной восприимчивости и проводимости.



Рисунок 4. Коэффициент линейного термического расширения  $\alpha$  для LnCoO<sub>3</sub> (Ln = La, Pr, Nd, Dy, Sm, Gd, Y) [13].

Электрическое сопротивление P3M–кобальтитов значительно уменьшается с повышением температуры (рисунок 5). Эта температурная зависимость не подчиняется простому активационному закону. Величина  $d\ln p/d(T^{-1})$ , являющаяся энергией активации, для ряда недопированных соединений LnCoO<sub>3</sub> немонотонно изменяется с температурой и имеет максимум (рисунок 6), положение которого, также как и положение максимума для коэффициента линейного расширения  $\alpha$ , коррелирует с высокотемпературным переходом в магнитной восприимчивости.



Рисунок 5. Зависимость электросопротивления (ρ) от температуры (левый график) и от обратной температуры (правый график) [25].



Рисунок 6. Зависимость величины  $d\ln\rho/d(T^{-1})$  от температуры для серии RCoO<sub>3</sub> (R = La, Pr, Nd, Sm, Eu и Gd) [25].

При низких температурах редкоземельные кобальтиты обладают прыжковой проводимостью, характерной для диэлектриков Мотта [11, 26]. Значительное падение сопротивления в области температур выше 500 К привело к тому, что высокотемпературная аномалия магнитной восприимчивости стала рассматриваться как соответствующая переходу диэлектрик – металл.

На рисунке 7 представлена фазовая диаграмма соединений ряда  $LnCoO_3$  как функция ионного радиуса  $R(r_R)$ .



Рисунок 7. Электронная фазовая диаграмма соединений ряда  $RCoO_3$  [27]. Темные квадраты – температуры начала перехода спинового состояния, определенные из данных магнитной восприимчивости. Для R = La, Pr, Nd данные взяты из [7], для R = Eu из [28], для R = Y, Lu из [29]. Светлые и темные круги показывают температуры переходов диэлектрик – металл, полученных из значений теплоемкости для R = La [30],  $R = Pr \div Lu$  [27] и поведения сопротивления [25].

На этой диаграмме выделяются три области – немагнитные диэлектрики, парамагнитные диэлектрики и парамагнитные металлы. Плавность и размытость

переходов между данными состояниями приводит не к классическим фазовым переходам, а к кроссоверам.

Исследования методами рассеяния поляризованных нейтронов [20-23] и сдвига Найта [24], привели к выводу, что при низких температурах ионы кобальта в LaCoO<sub>3</sub> находятся в немагнитном низкоспиновом состоянии. При температуре более 100 К, спиновое состояние кобальта меняется, что влечет за собой как увеличение магнитного момента, так и изменение ионного радиуса ионов Co<sup>3+</sup> и, соответственно, изменение объема элементарной ячейки.

Важнейшим вопросом в изучении редкоземельных кобальтитов является вопрос переходов между низкоспиновым (LS, S = 0,  $t_{2g}^{6}$ ), промежуточноспиновым (IS, S = 1,  $t_{2g}^{5}e_{g}^{1}$ ) и высокоспиновым (HS, S = 2,  $t_{2g}^{4}e_{g}^{2}$ ) состояниями (рисунок 3(б)).

В октаэдрическом кристаллическом поле первоначально пятикратно вырожденный 3d-уровень иона Co<sup>3+</sup> расщепляется на трехкратно вырожденные  $t_{2g}$ -орбитали и двукратно вырожденные  $e_g$ -орбитали [31]. Величина расщепления  $\Delta = 10$ Dq является параметром кристаллического поля. По правилу Хунда электронная конфигурация d<sup>6</sup> должна соответствовать состоянию с максимальным спином, т.е. HS-состоянию  $t_{2g}^4 e_g^2$  со спином S = 2. При возрастании кристаллического поля правило Хунда нарушается, что приводит к основному LS-состоянию, имеющему конфигурацию  $t_{2g}^6$ . При этом  $\Delta \approx 2$  эВ [32,33]. В этом случае HS-состояние становится ближайшим возбужденным.

В работе [34] впервые была предложена «одностадийная» модель, объясняющая низкотемпературную аномалию магнитной восприимчивости LaCoO<sub>3</sub> как термически активированный спиновый переход из LS-состояния в  $\mathrm{Co}^{3+}$ HS-состояние. Предполагалось, что в случае равенства ионов высокоспиновом И низкоспиновом состояниях образуется магнитная сверхструктура с чередованием этих ионов, соответствующая плато на графике восприимчивости между двумя переходами. Вторая аномалия, согласно этой модели, соответствует переходу полупроводник – металл, разрушению магнитной сверхструктуры и переходу всего кобальта в высокоспиновое состояние с дальнейшим парамагнитным поведением.

Несмотря на то, что многочисленные экспериментальные данные не обнаружили свидетельств, подтверждающих образование сверхструктуры, интерпретация низкотемпературной аномалии как термического заселения возбужденного HS-состояния из низкоспинового LS-состояния преобладает и в настоящее время.

Появление «двухстадийной» модели [35] связано с попытками описать температурную зависимость магнитной восприимчивости при T > 100 К законом Кюри-Вейсса, что давало величину спина S более близкую к 1, чем к 2. В этой модели первая аномалия восприимчивости при T  $\approx$  100 К интерпретируется как переход из низкоспинового в промежуточноспиновое состояние (LS  $\rightarrow$  IS), а вторая при T  $\approx$  500 К – как переход из состояния с промежуточным спином в высокоспиновое (IS  $\rightarrow$  HS).

В течение последних десятилетий различные теории и новые методы исследований подтверждают правильность то одной, то другой модели. На сегодняшний момент однозначно утверждается только то, что при низких температурах ионы кобальта в LaCoO<sub>3</sub> находятся в низкоспиновом состоянии, а при температурах больше 500 К – в высокоспиновом, что подтверждается исследованиями электропроводности [25], фотоэмиссии [36], теплового расширения [37] и удельной теплоемкости [30].

Для промежуточной области температур от 100 К до 500 К нет однозначного доказательства в пользу реализации IS- или HS-состояния. Одни эксперименты [38-40] говорят в пользу промежуточноспинового состояния, другие [32,41-43] в пользу высокоспинового.

Отсутствие согласия и в экспериментальных и теоретических работах по вопросам спиновых переходов в РЗМ – кобальтитах означает необходимость дальнейших исследований.

При частичном замещении одного лантаноида на другой в составах  $Ln'_{1-x}Ln''_{x}CoO_{3}$  (La', La'' = La ÷ Lu) возникающее химическое давление, действующее эквивалентно внешнему давлению, приводит либо к дополнительной стабилизации низкоспинового состояния (если ионный радиус

замещающего элемента меньше), либо, наоборот, дестабилизирует его (если ионный радиус замещающего элемента больше). Стабилизация низкоспинового состояния приводит к увеличению спиной щели  $\Delta_s$ , при этом лучше проявляются диэлектрические свойства, а переход диэлектрик – металл происходит при более высоких температурах.

Ha рисунке 8 представлены a) зависимость логарифма от величины 1000/Т, б) температурная зависимость электросопротивления обратной магнитной восприимчивости для составов (Nd<sub>1-x</sub>Gd<sub>x</sub>)CoO<sub>3</sub> [44], а на рисунке 9 показана температурная зависимость электросопротивления  $La_{1-x}Eu_{x}CoO_{3}$  как функция от температуры для различных х [28].



Рисунок 8. Температурные зависимости а) логарифма сопротивления и б) обратной магнитной восприимчивости для (Nd<sub>1-x</sub>Gd<sub>x</sub>)CoO<sub>3</sub> при различных х [44].



Рисунок 9. Температурная зависимость электросопротивления La<sub>1-x</sub>Eu<sub>x</sub>CoO<sub>3</sub> при разных х [28].

Из графиков, представленных на рисунках 8 и 9, видно, что кобальтиты  $Ln'_{1-x}Ln''_{x}CoO_{3}$  (Ln', Ln'' = La ÷ Lu) с частичным изовалентным замещением, проявляют свойства аналогичные свойствам составов  $LnCoO_{3}$  (Ln = La ÷ Lu) при полном замещении одного редкоземельного элемента на другой.

#### **1.2.** Особенности электронных свойств составов $LnCoO_3$ (Ln = Ln $\div$ Lu)

Наблюдаемый плавный переход диэлектрик – металл для соединений ряда LnCoO<sub>3</sub> (Ln = La  $\div$  Lu) (рисунки 5, 7, 8a, 9) является одной из интересных особенностей перовскитоподобных редкоземельных кобальтитов. Природа этого перехода в базовом представителе этого ряда LaCoO<sub>3</sub> при повышении температуры рассматривалась разными способами – и как термическое заселение  $e_g$ -состояний, сопровождающее увеличение длины связи Co – O [46], и как сужение полупроводниковой щели между пустыми  $e_g$ -состояниями и заполненными  $t_{2g}$ -состояниями [47], и как переход порядок – беспорядок в случае орбитального упорядочения [48]. Сопоставление данных по обычной и оптической проводимости в совокупности с данными по измерению эффекта Холла, произведенными в [32], показало, что обычный сценарий схлопывания диэлектрической щели неприменим к редкоземельным кобальтитам. Все наблюдаемые свойства термически индуцированного перехода металл – диэлектрик (*IMT*) после завершения спинового перехода характерны для мотттовского перехода в сильно коррелированных электронных системах.

Как и во всех оксидах переходных металлов, наличие диэлектрической щели обусловлено сильными межэлектронными взаимодействиями *3d*-иона переходного металла. Однако, существенная разница между величиной спиновой щели  $\Delta_s$  и величиной энергии активации  $E_a$  электрической проводимости для низких температур подразумевает, что соединения LnCoO<sub>3</sub> не являются простыми зонными диэлектриками [45]. К примеру, в LaCoO<sub>3</sub>,  $\Delta_s \approx 150$  K, а  $E_a \approx 0,1$  эВ. Более того, значительное отличие между величиной зарядовой щели  $2E_a$  и температурой перехода диэлектрик – металл  $T_{IMT}$  означает, что этот переход вряд ли может быть просто объяснен в рамках модели узкощелевого полупроводника [25]. Так, для LaCoO<sub>3</sub>  $2E_a \approx 2300$  K, а  $T_{IMT} \approx 550$  K.

Так как большинство оксидов переходных металлов являются системами с сильными электронными корреляциями, имеются определенные трудности в их теоретическом описании. Традиционные одноэлектронные подходы оказываются не в состоянии описать многие свойства этих материалов, так как для их описания необходимо принимать во внимание сильные электронные корреляции и тесную взаимосвязь зарядовых, орбитальных, спиновых и решеточных степеней свободы. Одним из методов, позволяющих это учесть, является обобщенный метод сильной связи (GTB) [49] и его ab initio-версия LDA+GTB [50]. В работе [51], учитывая возбуждения различными квазичастичные между локализованными многоэлектронными состояниями  $d^{n-1}$ ,  $d^n$ ,  $d^{n+1}$  электронных конфигураций иона переходного металла в кристаллическом поле (рисунок 10), представлены результаты расчетов методом LDA+GTB (рисунки 11, 12) электронной структуры для LaCoO<sub>3</sub> и описан переход диэлектрик-металл, наблюдаемый в этом соединении при T  $\approx 500 - 600$  K (рисунок 12).



Рисунок 10 [51]. Набор низкоэнергетических термов для  $d^{Ne}$ ,  $N_e = 5$ , 6, 7 электронных конфигураций в кристаллическом поле. При T = 0 заселен только основной низкоспиновый синглет  ${}^{1}A_{1}$  ( $N_e = 6$ ), фермиевские возбуждения, формирующие дно зоны проводимости и потолок валентной зоны, обозначены сплошными линиями. Штриховыми линиями отмечены переходы, ответственные за формирование внутрищелевых состояний с ростом температуры. Их спектральный вес определяется заселенностью высокоспинового состояния конфигурации  $d^{6}$ .





Рисунок 11 [51]. Квазичастичные спектры и плотности состояний а) при T = 0, LaCoO<sub>3</sub> – диэлектрик с переносом заряда и с шириной щели  $E_g \approx 1.5$  эB, б) T = 100 К, наблюдается рост внутрищелевых состояний, в) T = 600 К, зонная структура уже имеет металлический тип.



Рисунок 12 [51]. а) Зависимость ширины диэлектрической щели  $E_g$  от температуры,  $E_g = 0$  при T = T<sub>IMT</sub>  $\approx 587$  K, б) Температурная зависимость сопротивления. Сплошной линией представлены экспериментальные данные [45], пунктирной – полученные нами теоретически.

Аналогичные расчеты квазичастичного спектра для состава GdCoO<sub>3</sub> для различных значений температур, показывающие появление новых зон как внутри щели, так и внутри валентной зоны и зоны проводимости, уменьшающие энергию диэлектрической щели, приведены в [54].

#### 1.3. Спиновые кроссоверы

Явление спинового кроссовера заключается в изменении спинового состояния иона переходного 3d-металла в кристалле. Для ионов  $Fe^{3+}$  и  $Co^{3+}$  в перовскитоподобных структурах на основе оксидов кобальта переключение спинового состояния происходит в октаэдрическом окружении лигандов – ионов  $O^{2-}$ . Спиновый кроссовер может индуцироваться и управляться изменением температуры, давления, световым облучением и т.д..

Спиновый кроссовер был открыт Камби почти 80 лет назад [69]. Он исследовал зависимость электронных состояний Fe(III)tris(dithiocarbamate) от температуры, которая определялась величиной и поведением поля лигандов. После того, как спустя тридцать лет было обнаружено, что в двухвалентном железе с изменением температуры также происходит изменение спинового состояния [70], началось активное изучение явления спинового перехода. Спиновый переход был обнаружен в комплексах двух- и трехвалентного железа, двух- и трехвалентного кобальта, никеля и хрома [71,72] С конца шестидесятых годов прошлого века в связи с попытками записи и хранения информации на молекулярном уровне, наиболее пристальное внимание уделялось исследованиям спинового кроссовера в соединениях с двухвалентным железом. В настоящее время широко изучаются комплексы всех 3d-ионов.

Для понимания природы спинового перехода можно обратиться к диаграммам Танабе – Сугано для ионов переходных металлов в октаэдрических комплексах, которые образуются в перовскитоподобных материалах. На рисунке 13 и рисунке 14 приведены – зависимости энергии различных термов от величины кристаллического поля для ионов Fe<sup>3+</sup> и Co<sup>3+</sup> соответственно.



Рисунок 13.(а) Диаграмма Танабе – Сугано для иона  $Fe^{3+}$  в октаэдрическом окружении. Сплошные линии – зависимость энергии различных термов от величины кристаллического поля  $\Delta$ , В – параметр Рака. (б) Изменение заселенности  $e_g$  и  $t_{2g}$  – уровней иона  $Fe^{3+}$  при переходе из высокоспинового (HS) состояния в низкоспиновое (LS) с возрастанием энергии кристаллического поля  $\Delta$ . Стрелками показано направление спина [67].



Рисунок 14. Диаграмма Танабе – Сугано для иона Co<sup>3+</sup> в октаэдрическом окружении (зависимость энергии электронных термов иона Co<sup>3+</sup> от величины кристаллического поля Δ), В – параметр Рака. [73-75].

В последнее время широко исследуются спиновые кроссоверы при приложении гидростатического давления (индуцированный давлением спиновый переход). Ионы Fe<sup>3+</sup> в соединениях, например Fe<sub>2</sub>O<sub>3</sub>, FeBO<sub>3</sub>, находятся в слабом октаэдрическом кристаллическом поле, создаваемом ионами O<sup>2-</sup>. При этом выполняется правило Хунда, т.е. для ионов Fe<sup>3+</sup> основным состоянием является высокоспиновое HS-состояние (S = 5/2, <sup>6</sup>A<sub>1</sub>). Из диаграмм Танабе – Сугано видно, что с повышением давления из-за увеличения параметра кристаллического поля  $\Delta$ энергия низкоспинового LS-состояния (S = 1/2, <sup>2</sup>T<sub>2</sub>) убывает быстрее, чем энергия терма <sup>6</sup>A<sub>1</sub>, что приводит к кроссоверу этих состояний. Основное состояние HSконфигурации для 3d<sup>5</sup>-электронов ( $e_g^2 \uparrow$ )( $t_{2g}^3 \uparrow$ ) заменяется при переходе в LSсостояние конфигурацией ( $e_g^0$ )( $t_{2g}^3 \uparrow$ )( $t_{2g}^2 \downarrow$ ) (рисунок 13(б)). При этом магнитный момент должен уменьшиться в 5 раз. Происходит магнитный коллапс. Механизм магнитного коллапса, происходящий из-за HS – LS кроссовера при T = 0 изображен на рисунке 15.



Рисунок 15. Механизм магнитного коллапса, происходящий из-за HS – LS кроссовера [76]; а) схематическое изображение изменения энергий HS и LS состояний, б) изменение заселенности HS и LS состояний при T = 0, в) изменение спинового состояния в точке спинового кроссовера;  $P_C$  – давление, при котором возникает состояние спинового кроссовера.

Несколько другая картина наблюдается в октаэдрическом комплексе лигандов для ионов  $\text{Co}^{3+}$ . Кристаллическое поле, создаваемое ионами кислорода достаточно велико, правило Хунда нарушается и основным состоянием для ионов переходного металла конфигурации  $3d^6$  является LS-состояние (S = 0,  ${}^1A_1$ ). Если бы приложить отрицательное давление, то есть при изотропном расширении кристалла, то такие соединения могли бы проявлять обратный кроссовер из LS в HS состояние (рисунок 16). В настоящей диссертации будет показано, что тепловое расширение кристаллов GdCoO<sub>3</sub> играет именно такую роль, приводя к кроссоверу в HS состояние при нагревании образца.



Рисунок 16. Схема спинового кроссовера для ионов переходного металла конфигурации 3d<sup>6</sup>.

Схематически, отличие спинового перехода для ионов  $Fe^{3+}$  и  $Co^{3+}$  показано на рисунке 17.



Рисунок 17. Схематическое изображение изменения энергий низкоспинового и высокоспинового состояний в зависимости от приложенного гидростатического давления для различных составов. Р<sub>С</sub> – точка спинового кроссовера, индуцированного давлением.

#### ГЛАВА 2. ПОЛУЧЕНИЕ ОБРАЗЦОВ И МЕТОДИКИ ИЗМЕРЕНИЯ

С целью получения достоверных результатов, поликристаллические образцы ряда La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> были получены двумя различными способами – методом твердофазного синтеза по стандартной керамической технологии и зольгель методом.

#### 2.1. Синтез поликристаллических образцов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> золь – гель методом

Синтез поликристаллических образцов золь-гель методом осуществлялся Верещагиным Сергеем Николаевичем и Шишкиной Ниной Николаевной (ИХХТ СО РАН, г. Красноярск)

Для синтеза использовались нитраты лантана, гадолиния и кобальта, а также глицин  $C_2H_5NO_2$  (аминоуксусная кислота). Навески нитратов лантана, гадолиния и кобальта рассчитывались, исходя из необходимого содержания La, Gd и Co в получаемом перовските. Предварительно, определялись точные содержания оксидов в исходных нитратах.

Например, для синтеза La<sub>0.9</sub>Gd<sub>0.1</sub>CoO<sub>3</sub> были взяты следующие навески: La(NO<sub>3</sub>)<sub>3</sub>·xH<sub>2</sub>O (с содержанием оксида 37.65%) - 3 г Gd(NO<sub>3</sub>)<sub>3</sub>·xH<sub>2</sub>O (с содержанием оксида 41.10%) - 0.764647 г Co(NO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O (с содержанием оксида 28.12%) - 2.472946 г

Необходимое количество глицина рассчитывается из следующих уравнений:

$$2Co(NO_3)_2 + 2C_2H_5NO_2 \rightarrow Co_2O_3 + 4CO_2 + 5H_2O + 3N_2$$
  

$$6Ln(NO_3)_3 + 10C_2H_5NO_2 \rightarrow 3Ln_2O_3 + 20CO_2 + 25H_2O + 14N_2$$
(1)  

$$Ln = La + Gd$$

Откуда навеска C<sub>2</sub>H<sub>5</sub>NO<sub>2</sub> (содержание основного вещества 98%) - 1.768801 г.

Далее нитраты лантана и гадолиния растворялись в 50 мл дистиллированной воды в колбе. В другой колбе, также в 50 мл дистиллированной воды, растворялся нитрат кобальта, растворы сливались в стакан, в который добавлялся глицин. Полученный раствор перемешивался на магнитной мешалке при комнатной температуре 40-60 мин. Стакан с раствором помещался в сушильный шкаф с температурой 95°C с целью полного испарения воды, которое происходило за 10-12 часов. После упаривания раствора получался твердый гель темно-вишневого цвета.

После этого, стакан с гелем помещался в печь, быстро нагревался до 80°С, после чего температура поднималась со скоростью 1°/мин. При температурах 140-170°С начинался процесс саморазогрева смеси (рисунок 18), который очень трудно контролировался; в некоторых случаях он сопровождался сильным "шипением", хлопком, а в некоторых случаях - воспламенением. Во всех случаях при этом происходил вынос из стакана части продукта (эффект «вулкана»), причем после воспламенения температура смеси резко падала. Стакан с порошком продолжали нагревать до 300°С со скоростью 10°/мин и при достижении 300 градусов дополнительно выдерживали при этой температуре 30 мин.



Рисунок 18. ДТА (дифференциально – термический анализ) кривая нагрева геля на воздухе. Масса образца ~50 мг.

Полученный продукт представлял собой чрезвычайно мелкодисперсный, очень рыхлый и легкий черный порошок, который таблетировали на прессе с усилием 6.8 -7 тонн (диаметр пресс-формы 16мм), а затем таблетки прокаливали в муфельной печи на воздухе 24 часа при температуре 1100°С. Нагрев образца проводился в воздухе, скорость подъема температуры после 750°С - 100°/час.

Приведенные на рисунке 19 ДСК-ТГ (дифференциально-сканирующая калориметрия – термогравиметрия) кривые показывают, что в процессе этого нагрева наблюдается дополнительная потеря массы, которая заканчивается при 680-690°С.



Рисунок 19. ДСК-ТГ кривые прогрева спрессованного порошка, полученного при разложении геля при 300° С.

#### 2.2. Получение образцов методом твердофазного синтеза

Для синтеза поликристаллических образцов  $La_{1-x}Gd_xCoO_3$  (x= 0; 0.05; 0.1; 0.2; 0.5, 0.8, 1) использовались оксиды лантана, гадолиния и кобальта чистотой не менее 99,9%. Предварительно, по данным ДСК (прибор STA 449C Jupiter, NETZSCH) определялось точное содержание оксидов металлов в исходных порошках.

Результаты анализа приведены на рисунке 20.



Рисунок 20. ДСК-ТГ кривые прогрева исходных оксидов  $Co_3O_4$  (1),  $Gd_2O_3$  (2) и  $La_2O_3$  (3), полученных при их нагревании до 600° С.

На рисунке приведена потеря массы для образцов  $La_2O_3$ ,  $Gd_2O_3$ ,  $Co_3O_4$  и соответствующая выделению воды и  $CO_2$ . Таким образом, синтезировать образцы можно было двумя способами – брать для синтеза исходный образец оксида, считая, что в нем содержится 87.6 и 97.6%  $La_2O_3$  и  $Gd_2O_3$  соответственно, или прокаливать (сушить) исходные составы и затем брать их в соответствующих отношениях. Учитывая большую рыхлость гидроксидов по сравнению с оксидами и то, что они сами разлагаются в процессе первого нагрева, было решено синтезировать образцы первым способом.

Далее оксиды La<sub>2</sub>O<sub>3</sub>, Gd<sub>2</sub>O<sub>3</sub> и Co<sub>3</sub>O<sub>4</sub> в необходимых количествах тщательно перемешивались и полученная смесь отжигалась на воздухе при температуре 1100° С в течение 24 часов. Далее смесь перетиралась в агатовой ступке с добавлением этанола (C<sub>2</sub>H<sub>5</sub>OH) и отжигалась при тех же самых условиях. После трехкратного повторения данной процедуры прессовались таблетки в виде брусочков размером 9x5x(2-3) мм<sup>3</sup> под давлением 4 тонны/см<sup>2</sup> и прокаливались при 1100° С в течение суток.

Принципиальных различий между образцами, полученными по керамической технологии и по золь-гель технологии, в результате исследований не выявлено. Структурные и магнитные свойства исследуемых образцов, полученных по различным технологиям, являются идентичными, поэтому в дальнейшем не будет уточняться, каким образом получены исследуемые образцы.

#### 2.3. Исследование кристаллической структуры

Исследования кристаллической структуры проводились Соловьевым Леонидом Александровичем (ИХХТ СО РАН, г. Красноярск)

Данные порошковой рентгеновской дифракции (PXRD) для состава GdCoO<sub>3</sub> в интервале температур от 298 до 1273 К были получены на дифрактометре PANalytical X'Pert PRO, оснащенном твердотельным детектором, использующим СоК<sub>а</sub>-излучение диапазоне 20 в пределах 20–105°. Была использована камера Anton Paar HTK 1200N с вращением образца и автоматической регулировкой. Низкотемпературные PXRD-измерения при 213 К и 133 К проводились на порошковом дифрактометре Bruker D8 ADVANCE с излучением CuK<sub>α</sub> и детектором Vantec в диапазоне 20 20-105° в камере Anton Paar TTK 450. Образцы GdCoO<sub>3</sub> перетирались в октане в агатовой ступке и помещались в плоский для РХRD-измерений. Перед измерениями держатель образцы прокаливались в НТК при температуре 1273 К в течение 2 часов.

Полнопрофильный анализ кристаллической структуры GdCoO<sub>3</sub> был сделан, используя метод Ритвельда [55] и уточнения структуры с помощью метода минимизации производной разности (DDM) [56]. Метод DDM обеспечивает возможность надежного определения и уточнения плохо контролируемых параметров и структурных нюансов, выявление которых затруднительно при использовании стандартного подхода Ритвельда, требующего моделирования фоновой составляющей дифрактограммы. Для высокотемпературных данных (298 – 1273 К) уточнялись параметры решетки, координаты атомов и анизотропные температурные факторы, учитывая предпочитаемую ориентацию, анизотропное уширение пиков, шероховатость поверхности образцов и несовмещенные эффекты. Также были учтены незначительные примесные фазы (приблизительно

3%) оксидов Со и Gd. Низкотемпературная структура уточнялась изотропно из-за проблем с поглощением рентгеновских лучей.

#### 2.4 Измерение теплоемкости

Теплоемкость образцов измерялась Верещагиным Сергеем Николаевичем (ИХХТ СО РАН, г. Красноярск).

Данные по теплоемкости от 313 К до 1073 К были рассчитаны по «методу отношений», используя дифференциальный сканирующий калориметр Netzsch STA Jupiter 449C, оснащенный специальным держателем образца для  $C_p$  измерений. В идентичных условиях (динамическая аргонокислородная атмосфера с 20%  $O_2$ , скорость нагрева  $10^\circ$ /мин) были проведены три измерения – измерение нулевой линии (пустой платиновый тигель с перфорированной крышкой), стандартизированного сапфирового диска (40 мг) в тигле образца и, непосредственно, измерение образца GdCoO<sub>3</sub> (70 мг, спрессован в диск диаметром 6 мм.) в тигле образца. Чтобы убедиться в воспроизводимости полученных результатов, каждое измерение проводилось по три раза. Теплоемкость образца рассчитывалась по откорректированным ДСК-кривым в соответствии с формулой (2)

$$C_{p} = \frac{m_{st}}{m_{sa}} \frac{DSC_{sa} - DSC_{bl}}{DSC_{st} - DSC_{bl}} C_{p,st}, \qquad (2)$$

где  $C_p$  – теплоемкость образца при температуре T,  $C_{p,st}$  – табличная теплоемкость стандартизированного образца (сапфира) при температуре T,  $m_{st}$ ,  $m_{sa}$  – массы стандарта и образца,  $DSC_{sa}$ ,  $(DSC_{st,}, DSC_{bl})$  – уровень сигнала DSC, полученный из графика образца (стандарта, нулевой линии) при температуре T.

#### 2.5. Измерение намагниченности

Измерения температурной зависимости магнитного момента при температурах от 2 до 300 К проводились на SQUID-магнитометре марки MPMS-XL (Magnetic

Ргорегties Measurement System, фирма - изготовитель Quantum Design, USA) в центре коллективного пользования СФУ Великановым Дмитрием Анатольевичем (ИФ СО РАН), при температурах выше комнатной – от 300 К до 1000 К – использовался вибрационный магнитометр VSM 7407 (фирма – изготовитель Lake Shore Cryotronics, USA). Температурные зависимости магнитного момента при охлаждении образцов в режимах ZFC (zero – field – cooled) и FC (field – cooled) в полях от 0.1 Т до 0.5 Т совпадают. Относительная погрешность измерений  $\Delta \chi/\chi \leq 0.01$ , так что при величине измеряемой магнитной восприимчивости  $\chi \sim 10^{-4}$  погрешность не превышает ширины линий, указанных на графиках магнитной восприимчивости.

#### 2.6. Оценка кислородной нестехиометрии

Оценка кислородной нестехиометрии проводилась Верещагиным Сергеем Николаевичем (ИХХТ СО РАН, г. Красноярск).

Содержание кислорода и индекс нестехиометрии  $\delta$  в составах La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3- $\delta$ </sub> величине потери массы  $(\Delta m,$ %), измеренной определялся ПО при термогравиметрическом восстановлении [57], предполагая, что кобальт Процесс восстановления восстанавливается до металлического состояния. осуществлялся на анализаторе NETZSCH STA 449C, оснащенном массспектрометром Aeolos QMS 403С. Эксперимент проводился в потоке аргона с 5% 10° в минуту. H<sub>2</sub> при нагревании образца до 900° С co скоростью Восстановительный процесс происходил В алундовом Al<sub>2</sub>O<sub>3</sub>-тигле с перфорированной крышкой. Масса образца составляла 35 мг. Измерения проводились с учетом выталкивающей силы, то есть, контрольные измерения (нулевая линия) с пустыми тиглями выполнялись при тех же самых условиях. По результатам термогравиметрического восстановления, структура GdCoO<sub>3</sub>, также как и структура лантан-гадолиниевых кобальтитов, близка к стехиометрии, δ < 0,01.

## 3.1. Структурные свойства GdCoO<sub>3</sub> в широком интервале температур. Сосуществование высокоспинового и низкоспинового состояний в промежуточной области температур

Экспериментальная и рассчитанная дифрактограммы GdCoO<sub>3</sub>, а также разностная кривая между экспериментальными и теоретическими данными после уточнения кристаллической структуры GdCoO<sub>3</sub> методом минимизации разности производных при 298 К и 1273 К показаны на рисунке 21. Разностная кривая является почти идеальной вплоть до наивысших значений 20, указывая на высокое качество обработки. Структурные данные для всего изученного температурного диапазона доступны в [58].


Рисунок 21. Результаты по рентгеновской дифракции соединения GdCoO<sub>3</sub> при температуре 298 К( а) и 1273 К (б): полученная экспериментально кривая (верхняя, черная), теоретическая (средняя, красная) и разностная кривая между экспериментальными и теоретическими данными (нижняя, синяя). Положение вычисленных пиков основной и второй фазы показаны черточками.

В температурном интервале 200 - 800 К выявлены значительные асимметричные уширения дифракционных пиков, которые постепенно уменьшаются и исчезают в области более высоких и более низких температур. Фрагменты дифрактограмм, демонстрирующие асимметричное уширение пиков, показаны на рисунке 22.



Рисунок 22. Характерные фрагменты дифрактограмм при 573 К и 873 К. Асимметричное уширение пиков для 573 К показаны стрелками. Для температуры 873 К асимметрия отсутствует.

Наблюдаемое уширение пиков является воспроизводимым и обратимым при повторных нагревах и охлаждениях и наблюдается для образцов, полученных как твердофазным синтезом, так и золь-гель методом. На рисунке 21 заметно, что дифракционные пики при 1273 К значительно уже, чем те же самые пики при 298 К из-за асимметричного уширения, показанного на рисунке 22. Уширение успешно моделируется включением второй фазы, предполагая наличие в образцах неоднородностей в виде протяженных областей (доменов) с одинаковой симметрией решетки, но различающимися параметрами решетки. Эти неоднородности могут быть связаны с беспорядочным пространственным распределением различных спиновых состояний Со в объёме кристалла. Наибольшая асимметрия пиков наблюдалась в температурном интервале между 300 К и 700 К. Рассчитанная ожидаемая вероятность наибольшего роста заселенности высокоспинового состояния, которая будет рассмотрена позднее, попадает в ту же самую область температур (рисунок 26 (a)).

Температурные зависимости параметров ячейки. объема ячейки, коэффициента объемного расширения и уточненные данные доли второй фазы показаны на рисунке 23. Соответствующие значения, рассчитанные для нулевой температуры из DFT-GGA оптимизированной структуры для низкоспиновой, промежуточноспиновой и высокоспиновой моделей, также добавлены на графике. (Расчеты методом DFT-GGA проводились Федоровым А. С. и Кузубовым А.А. (ИФ СО РАН)). Можно заметить, что в области температур до 800 К, уточненный параметр *b* элементарной ячейки второй фазы систематически выше, чем у первой фазы, в то время как остальные параметры а и с почти одинаковые, показывая, что домены второй фазы с увеличенной решеткой соизмеримы с доменами основной фазы в плоскости решетки *ас* и могут примыкать друг к другу этими DTFплоскостями. Относительная разница параметрами между оптимизированной элементарной ячейки для LS и HS моделей является наибольшей для постоянной решетки *b*, что дополнительно подтверждает зависимость наблюдаемых структурных свойств от изменения состояния Со<sup>3+</sup>.



Рисунок 23. Температурные зависимости параметров ячейки, объема элементарной ячейки, коэффициента объемного расширения и содержание доменов с измененным объемом решетки для  $GdCoO_3$ . Значения, полученные из DFT-оптимизированной структуры для LS, IS и HS моделей при T = 0 обозначены соответственно L\*, I\* и H\*.

Средние значения главных межатомных расстояний и углов в кристаллической структуре GdCoO<sub>3</sub> после уточнения методом минимизации производной разности в зависимости от температуры представлены на рисунке 24. Полученные зависимости демонстрируют заметные изменения при температуре выше 500 К, аналогично другим свойствам исследуемого

материала. Уменьшение углов <0-Со-О> и <Со-О-Со> при высоких температурах указывает на увеличение искажения и наклона CoO<sub>6</sub>-октаэдров в структуре. DFT-оптимизированные значения демонстрируют аналогичную динамику изменений от низкоспинового к высокоспиновому состоянию. Среднее расстояние <Со-О> близко к тому же значению в структуре LaCoO<sub>3</sub> при температурах вплоть до 700 К [11], но значительно увеличивается при более высоких температурах.



Рисунок 24. Температурные зависимости средних расстояний и углов в кристаллической структуре  $GdCoO_3$ . Значения, рассчитанные из DFT-оптимизированной структуры для LS, IS и HS моделей при T = 0 обозначены соответственно L\*, I\* и H\*.

Для демонстрации большего расширения (которое можно интерпретировать как результат отрицательного давления) в GdCoO<sub>3</sub> на рисунке 25 приведено сравнение температурного расширения в образцах LaCoO<sub>3</sub> и GdCoO<sub>3</sub>.



Рисунок 25. Температурные зависимости <Co-O> – расстояний в LaCoO<sub>3</sub> (круги, [11]) и в GdCoO<sub>3</sub> (точки; данные взяты из рисунка 24).

Для того чтобы сравнить длины связей в LaCoO<sub>3</sub> и GdCoO<sub>3</sub> необходимо иметь в виду различную симметрию их решеток. В LaCoO<sub>3</sub> все шесть связей Co-O равны между собой [11], а в GdCoO<sub>3</sub> имеются три пары связей не равной длины. На рисунке 24 и рисунке 25 приведены средние длины связей <Co-O> с вертикальными барами, показывающими разницу между максимальной и минимальной длиной. При температуре менее 600 К, разница в длинах <Co-O> для LaCoO<sub>3</sub> и GdCoO<sub>3</sub> очень мала, в то время как при T > 700 К длина связи <Co-

O> в GdCoO<sub>3</sub> становится значительно больше, чем в LaCoO<sub>3</sub>. Приведенные на рисунке 24 результаты вычислений из первых принципов длин связей в высокоспиновом и низкоспиновом состояниях для GdCoO<sub>3</sub> больше, чем соответствующие значения для LaCoO<sub>3</sub>. Фактически, рассчитанные длины связей <Co-O> равны (в Å): 1.915 (LS) и 1.923 (HS) для LaCoO<sub>3</sub>, 1.938 (LS) и 2.008 (HS) для GdCoO<sub>3</sub>. Длины <Co-O> в низкоспиновом состоянии для LaCoO<sub>3</sub> и GdCoO<sub>3</sub> сильно не отличаются, в отличии от высокоспинового состояния, где различие очень существенно. Это объясняет разницу в высокотемпературном поведении рассматриваемых оксидов на рисунке 25.

# 3.2. Аномально большое тепловое расширение GdCoO<sub>3</sub> в области сосуществования двух спиновых состояний. Связь теплового расширения и флуктуаций мультиплетности

Экспериментальные данные по температурным зависимостям параметров решетки и объема решетки на рисунке 23 показывают большое тепловое расширение в GdCoO3. Более того, значение коэффициента теплового расширения ( $\Delta V/V\Delta T$ ) оказалось аномально велико, на порядок больше обычного для кристаллов значения 10<sup>-5</sup> K<sup>-1</sup>, которое определяется ангармонизмом кристалла. Очевидно, что в данном случае работает какой-то новый механизм теплового расширения. Мы связываем его с различными ионными радиусами иона Co<sup>3+</sup> в высокоспиновом (r<sub>HS</sub> = 0.61Å) и низкоспиновом (r<sub>LS</sub> = 0.545Å) состояниях. При конечной температуре, каждый ион Co<sup>3+</sup> может находиться либо в

высокоспиновом HS с вероятностью  $n_{HS}(T)$ , либо в нискоспиновом LS с вероятностью  $n_{LS}(T)$ . HS и LS – состояния имеют одну и ту же симметрию с различным объемом элементарной ячейки  $V_{HS}$  и  $V_{LS}$  и параметрами ячейки. Объемы элементарных ячеек, рассчитанные из первых принципов A.C. Федоровым и A.A. Кузубовым методом DFT-GGA при температуре T = 0, имеют следующие значения -  $V_{HS}(T) = 225.87 \text{ Å}^3$ ,  $V_{LS}(T) = 209.35 \text{ Å}$ . Так как при помощи стандартной теории DFT рассчитать высокоспиновое парамагнитное (PM)

состояние не представляется возможным, вычисления DFT-GGA были сделаны для гипотетического ферромагнетика (FM) GdCoO<sub>3</sub>. Таким образом, для высокоспинового ферромагнитного состояния при T = 0,  $V_{HS}^{(FM)} = 225.87 \text{ Å}^3$ . Сравнивая экспериментальное значение объема элементарной ячейки V(T) на рисунке 23 при T = 1200 К, при которой GdCoO<sub>3</sub>, очевидно, находится в парамагнитном состоянии, видно, что V(T) немного больше  ${V_{HS}}^{(FM)}\!(0)$  , что очевидно связано с обычным ангармоническим вкладом от термического расширения. Понятно, что вычисленное значение для ферромагнитной фазы несколько завышено. Таким образом, можно сделать вывод, что значение V<sub>HS</sub><sup>(PM)</sup>(0) в парамагнитном состоянии должно быть немного меньше. Физическим основанием для такого вывода является магнитострикция. К примеру, в железосодержащих инварных сплавах уменьшение объема при нагревании (и уменьшении намагниченности) настолько значительно, что это компенсирует температурное расширение решетки. Разумеется, величина магнитострикции зависит от материала. Поэтому имеется основание предположить, что  $V_{\rm HS}{}^{\rm (PM)}(0) <$  $V_{HS}^{(FM)}(0)$ . Ниже,  $V_{HS}(0)$  рассматривается в качестве подгоночного параметра.

Из-за ангармонизма решетки при определенной температуре можно записать:

$$V_{\rm HS}(T) = V_{\rm HS}(0)(1 + \alpha_{\rm HS}T), \ V_{\rm LS}(T) = V_{\rm LS}(0)(1 + \alpha_{\rm LS}T),$$
(3)

где α<sub>HS</sub> и α<sub>LS</sub> – решеточные вклады в термическое расширение для высокоспинового и низкоспинового состояний. Для случайной смеси двух состояний в приближении виртуального кристалла, можно записать:

$$V(T) = V_{\rm HS}(T) \cdot n_{\rm HS}(T) + V_{\rm LS}(T) \cdot n_{\rm LS}(T), \qquad (4)$$

где n<sub>HS</sub>(T) и n<sub>LS</sub>(T) – зависящие от температуры числа заселенности высокоспинового и низкоспинового состояний ионов Co<sup>3+</sup>.

$$n_{HS}(T) = \frac{g_{HS} \exp(-\Delta_S / k_B T)}{1 + g_{HS} \exp(-\Delta_S / k_B T)}, \qquad n_{LS} = 1 - n_{HS}, \qquad (5)$$

(рисунок 26 (а)), где  $g_{HS}$ - степень вырождения терма  ${}^{5}T_{2g}$ . Вырождение иона  $Co^{3+}$  определяется величинами спина S=2 и орбитального момента L=1 и равно g=(2S+1)(2L+1)=15.

Введем вклад флуктуаций мультиплетности в расширение объема

$$V_{\rm s}(T) = V_{\rm HS}(0)n_{\rm HS}(T) + V_{\rm LS}(0)n_{\rm LS}(T),$$
(6)

который может быть вычислен независимо от структурных данных. Тогда объем элементарной ячейки можно записать в виде

$$V(T) = V_{\rm s}(T) + \left[ V_{\rm HS}(0)n_{\rm HS}(T)\alpha_{\rm HS} + V_{\rm LS}(0)n_{\rm LS}(T)\alpha_{\rm LS} \right] T.$$
(7)

Зависимости от температуры для  $n_{HS}(T)$  и  $n_{LS}(T)$  (рисунок 26(а)) были определены по величине спиновой щели  $\Delta_S(T)$  по формуле (21), используя измерения магнитной восприимчивости (расчеты приведены в следующей главе). Экспериментальные данные V(T) и вычисленные значения вклада в объем от флуктуаций мультиплетности V<sub>S</sub>(T) приведены на рисунке 26 (б), при этом использовалось значение V<sub>HS</sub>(0) = 221.35Å. Когда значение V<sub>S</sub>(T) выходит на уровень насыщения при T ~ 1000 K, где  $n_{HS} \rightarrow 1$ ,  $n_{LS} \rightarrow 0$ , ангармонизм решетки приводит к линейному температурному вкладу. Коэффициент линейного расширения определяется выражениями

$$\alpha = \frac{1}{V} \frac{dV}{dT} = \alpha_s + \alpha_{\text{latt}}, \qquad \alpha_s = \frac{\partial n_{\text{HS}}}{\partial T} \cdot \frac{V_{\text{HS}} - V_{\text{LS}}}{V}$$
(8)

Вклад флуктуаций мультиплетности  $\alpha_{\rm S}$ , также как и доля высокоспиновых доменов по данным рентгеновской дифракции (рисунок 23), обусловлен, преимущественно, производной  $\partial n_{\rm HS}/\partial T$ , показанной на рисунке 26 (а). Сравнение измеренного параметра  $\alpha$  и рассчитанного значения  $\alpha_{\rm S}$  на рисунке 26 (в), позволяет оценить вклад решетки при высоких температурах. Так как  $n_{\rm HS} \rightarrow 1$  при T ~ 1000 K, то  $\alpha_{\rm latt} = \alpha_{\rm HS}$ . Из рисунка 26 (в), оцененное значение  $\alpha_{\rm HS} \approx 5 \times 10^{-5} \text{ K}^{-1}$ . Аналогично, при низкой температуре  $n_{\rm HS} \rightarrow 0$  и полный решеточный вклад определяется ангармонизмом в низкоспиновом состоянии. Из того же рисунка  $\alpha_{\rm LS} \approx 10^{-5} \text{ K}^{-1}$ . Эта величина типична для ангармонизма решетки; вклад в расширение решетки в высокоспиновом состоянии больше из-за большего ионного радиуса ионов Co<sup>3+</sup> в HS-состоянии.

Таким образом, смоделированное приближение виртуального кристалла позволяет понять особенности объемного расширения в GdCoO<sub>3</sub>, по крайней мере, качественно, предполагая, что механизм флуктуаций мультиплетности является преобладающим в широком температурном диапазоне 77 K < T < 800 K.

Небольшое количественное расхождение между V(T) и V<sub>S</sub>(T) в промежуточном температурном диапазоне вытекает либо из неполноты приближения виртуального кристалла, либо из недостаточной точности в подгонке спиновой щели из магнитных данных и оценки  $V_{HS}(0)$ .



Рисунок 26. Объем ячейки и коэффициент теплового расширения GdCoO<sub>3</sub> в модели виртуального кристалла: а) заселенность высокоспиновых состояний и ее производная по температуре, b) объем элементарной ячейки, c) коэффициент теплового расширения с решеточными вкладами от низкоспинового состояния при низких температурах и высокоспиновым вкладом при высоких температурах. Экспериментальные данные на графиках (b) и (c) показаны точками, сплошные линии – результаты расчетов.

#### 3.3. Структурные свойства $La_{1-x}Gd_xCoO_3$ (x = 0.0, 0.05, 0.1, 0.2, 0.5)

Методом порошкового рентген-дифракционного анализа проведены исследования кристаллической структуры (таблица 1) и фазового состава кобальтитов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3-δ</sub> в интервале температур от 25 до 1000 °C. Установлено, что в зависимости от состава и температуры исследованные образцы содержат 2 типа фаз, различающихся по структуре: (I) тригональную R-3c, структурный тип LaCoO<sub>3</sub> и (II) ромбическую *Pbnm*, структурный тип GdCoO<sub>3</sub>. Для смешанных кобальтитов при повышении температуры наблюдается фазовый переход из ромбической в тригональную фазу, при этом в интервале температур, близких к переходу, зафиксировано сосуществование двух типов фаз. Установлена линейная зависимость удельного объема элементарной ячейки от степени замещения лантана гадолинием (x) при температуре 25 °C (рисунок 27).

| Состав                    | $\mathbf{V}/\mathbf{Z}, \mathrm{\AA}^3$ | параметры ячейки, Å             |
|---------------------------|-----------------------------------------|---------------------------------|
| LaCoO <sub>3</sub>        | 56.02 тригональная, Z=6                 | 5.44459(2) 13.0931(1)           |
| $La_{0.95}Gd_{0.05}CoO_3$ | 55.79 тригональная, Z=6                 | 5.43871(7) 13.0675(2)           |
| $La_{0.9}Gd_{0.1}CoO_3$   | 55.60 тригональная (55%)                | 5.4337(1) 13.0467(5)            |
|                           | 55.68 ромбическая (46%)                 | 5.4325(3) 5.3739(3) 7.6301(4)   |
| $La_{0.8}Gd_{0.2}CoO_3$   | 55.38 ромбическая, Z=4                  | 5.4151(1) 5.3715(1) 7.6156(2)   |
| $La_{0.5}Gd_{0.5}CoO_3$   | 54.16 ромбическая, Z=4                  | 5.3436(10) 5.3611(5) 7.5614(12) |
| GdCoO <sub>3</sub>        | 52.54 ромбическая, Z=4                  | 5.2256(3) 5.3935(2) 7.4568(1)   |

Таблица 1. Удельный объем и параметры ячейки образцов поликристаллических образцов  $La_{1-x}Gd_xCoO_{3-\delta}$  (где x = 0.0, 0.05, 0.1, 0.2, 0.5 и 1.0)



Рисунок 27. Зависимость удельного объема элементарной ячейки кристаллов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3-δ</sub> от степени замещения х.

#### ГЛАВА 4. МАГНИТНЫЕ, ЭЛЕКТРОННЫЕ СВОЙСТВА И ТЕПЛОЕМКОСТЬ GdCoO<sub>3</sub>

# 4.1. Низкотемпературное магнитное поведение GdCoO<sub>3</sub>. Спин-флоп переход и магнитная фазовая диаграмма

На рисунке 28 представлена температурная зависимость намагниченности М(T) образца GdCoO<sub>3</sub> в магнитном поле 5 kOe.



Рисунок 28. Температурная зависимость намагниченности  $GdCoO_3$ , H = 5 kOe. На вставке приведен участок кривой M(T) в интервале 2 – 8 K.

С понижением температуры намагниченность монотонно растет. В окрестности 3 К наблюдается максимум M(T), который можно связать с переходом в антиферромагнитное состояние. Определенное нами значение  $T_N = 3.3$  К.

На рисунке 29 приведена температурная зависимость обратной магнитной восприимчивости  $\chi^{-1}(T)$ . В области высоких температур кривая  $\chi^{-1}(T)$  хорошо аппроксимируется линейной зависимостью по закону Кюри-Вейсса

$$\chi = \frac{C}{T + \Theta_c} \tag{9}$$

С – константа Кюри,  $\Theta_c$  - асимптотическая температура Кюри. Величина  $\Theta_c \approx 5.3$  К, что хорошо согласуется с данными работ [8,10,59]



Рисунок 29. Температурная зависимость обратной магнитной восприимчивости для GdCoO<sub>3</sub> в магнитном поле напряжённостью 5 kOe.

При температурах больше 6 К величина С  $\approx$  7.84 сm<sup>3</sup> K/mol, что соответствует эффективному магнитному моменту  $\mu_{eff} \approx$  7.91 $\mu_B$  на формульную единицу, значение которого практически совпадает с теоретическим значением  $\mu_{eff} \approx$  7.94 $\mu_B$  для свободного иона Gd<sup>3+</sup>, но несколько больше полученного в работах [8,10]. Используя теорию среднего поля, по формуле

$$kT_N = \frac{zJS(S+1)}{3},\tag{10}$$

где z – число ближайших соседей, S = 7/2 для  $Gd^{3+}$ , k – постоянная Больцмана, J – обменный интеграл, мы оценили величину обменного взаимодействия  $J_{Gd-Gd} \approx -0.11$  K.

На рисунке 30 представлены изотермы намагниченности  $GdCoO_3$ , полученные при различных температурах. В области низких полей при T = 2 и 2.7 К кривые намагничивания имеют изгиб (рисунок 30, рисунок 31), который можно интерпретировать как спин–переориентационный процесс. Значение  $H_{SF}$  при T = 2 К можно определить как точку пересечения аппроксимаций прямолинейных участков изотерм намагниченности (рисунок 31).



Рисунок 30. Кривые намагничивания GdCoO<sub>3</sub> при различных температурах.

Для образца, полученного по золь–гель технологии (рисунок 31 (a))  $H_{SF} = 4.7$  kOe. Аналогичным образом найденное значение  $H_{SF}$  при T = 2.7 K равно 2.8 kOe. На рисунке 31 (б) приведена для сравнения кривая намагничивания образца GdCoO<sub>3</sub>, изготовленного по технологии твердофазного синтеза. Магнитные свойства системы Gd<sub>1-x</sub>Ca<sub>x</sub>CoO<sub>3</sub> описаны в работе [59], однако спин-флоп переход в недопированном образце  $GdCoO_3$  там не обсуждался. Видно, что в образцах  $GdCoO_3$ , полученных разными технологиями, спин-флоп переход имеет место. Величина поля перехода  $H_{SF}$  различна. Очевидно, это обусловлено различием в анизотропии, связанным с микроструктурой образцов. Процесс спиновой переориентации носит размытый характер, что, скорее всего, связано с тем, что измерения проводились на поликристаллическом образце и намагниченность представляет собой усреднённое значение по всем направлениям.

При температурах выше 5 К (рисунок 30) на полевых зависимостях намагниченностей изгибы, характерные для спин-переориентационного процесса, отсутствуют, что соответствует парамагнитному поведению GdCoO<sub>3</sub>.



a)



Рисунок 31. Кривые намагничивания  $GdCoO_3$ , (a) – образец получен золь-гель методом, T = 2K, (б) – образец получен методом твердофазного синтеза, T = 2.5 K.

Температурные зависимости намагниченности, полученные в широком интервале полей 5 – 50 kOe приведены на рисунке 32. Видно, что с ростом поля максимумы на кривых М(Т), соответствующие температуре Нееля, смещаются в область низких температур.

В результате получена магнитная фазовая диаграмма  $GdCoO_3$  (рисунок 33), на которой показаны полевая зависимость температуры Нееля  $T_N(H)$  и температуры спин-флоп перехода  $T_{SF}(H)$ .



Рисунок 32. Температурные зависимости намагниченности GdCoO<sub>3</sub> в различных магнитных полях. Пунктирной линией показано смещение температуры Нееля при увеличении магнитного поля.



Рисунок 33. Полевая зависимость температуры Нееля T<sub>N</sub> (верхняя кривая) и температуры спин-флоп перехода.

Сделаем оценку обменного поля через температуру Нееля. В теории среднего поля [60]

$$\mu_B H_E(Gd) = zIS = \frac{3kT_N}{S+1} = \frac{2}{3}kT_N$$
(11)

Воспользовавшись известным соотношением из [61]

$$H_{SF} = \sqrt{2H_A \times H_E} , \qquad (12)$$

связывающем обменное поле  $H_E$  и поле магнитной анизотропии  $H_A$ , можно оценить величину последнего. Для GdCoO<sub>3</sub>, полученного золь-гель методом (рисунок 31(a)),  $H_E = 34$  kOe,  $H_A = 0.33$  kOe. Для образца полученного методом твердофазного синтеза (рисунок 31(б))  $H_E = 31$  kOe,  $H_A = 2.3$  kOe.

Эти данные можно сравнить с аналогичными характеристиками для монокристалла GdAlO<sub>3</sub> [62], где  $H_E = 21$  kOe,  $H_A \approx 3$  kOe. Различие связано с поликристаллическим характером наших образцов. Образцы, полученные твердофазным синтезом более анизотропны, чем образцы, полученные золь-гель методом.

Таким образом, полученное в эксперименте значение эффективного магнитного момента на формульную единицу  $\mu_{eff} \approx 7.91 \mu_B$  практически совпадает с теоретическим значением  $\mu_{eff}$  для свободных ионов Gd<sup>3+</sup>. Это в очередной раз подтверждает, что в рассматриваемом диапазоне температур выше 4К ионы Co<sup>3+</sup> находятся в немагнитном состоянии. При температуре ниже 3.3 К в подрешетке гадолиния происходит переход в антиферромагнитное состояние.

Отрицательное значение асимптотической температуры Кюри указывает на антиферромагнитный характер обменного взаимодействия Gd – Gd. Малость отличия  $|\Theta_c|$  от  $T_N$  показывает, что при оценке значений обменного поля  $H_E$  и поля анизотропии  $H_A$  можно ограничиться учётом только межподрешёточного взаимодействия.

Очень низкая температура Нееля  $T_N$  приводит к тому, что критические поля не велики – поле спин-флоп перехода порядка 10 kOe, обменное поле  $H_E \approx 20 \div 35$  kOe, поле анизотропии  $H_A \approx 0.1 \div 3$  kOe. Константа обменного взаимодействия  $J_{Gd-Gd} \approx -0.11$  K.

### 4.2. Высокотемпературное магнитное поведение GdCoO<sub>3</sub>. Вклад ионов Co<sup>3+</sup> в магнитные свойства GdCoO<sub>3</sub>

На рисунке 34 сплошной линией представлена температурная зависимость магнитной восприимчивости  $\chi(T)$  исследуемого образца GdCoO<sub>3</sub> в диапазоне от 2 до 800 К в магнитном поле H = 5 кЭ. Сравнивая экспериментальную кривую магнитной восприимчивости  $\chi(T)$  GdCoO<sub>3</sub> с графической зависимостью  $\chi(T)$  для свободных ионов Gd<sup>3+</sup>, полученную на основании формулы [63]:

$$\chi = \frac{g_J^2 \mu_B^2 J (J+1) N}{3k(T-\Theta)},$$
(13)

где N – число ионов Gd<sup>3+</sup> в единице объема,  $\mu_B$  – магнетон Бора,  $k_B$  – постоянная Больцмана, J = S =7/2, g<sub>J</sub> = 2, видно, что с повышением температуры наблюдается различие между экспериментальными данными и расчетными результатами. Очевидно, что с ростом температуры в магнитной восприимчивости GdCoO<sub>3</sub>

появляется вклад от ионов Co<sup>3+</sup>. С ростом температуры вклад в магнитную восприимчивость GdCoO<sub>3</sub> ионов Co<sup>3+</sup> увеличивается (рисунок 34, вставка).



Рисунок 34. Температурные зависимости магнитной восприимчивости для образца  $GdCoO_3$  (сплошная линия) и  $Co^{3+}$  (штриховая линия) в поле 5 кЭ. На вставке приведен высокотемпературный диапазон измерений, показывающий рост вклада от ионов  $Co^{3+}$  с повышением температуры.

Полную намагниченность GdCoO<sub>3</sub> можно представить в виде суммы двух независимых слагаемых:

$$M_{GdCoO_3} = M_{Gd} + M_{Co} , (14)$$

где M<sub>Gd</sub> и M<sub>Co</sub> – намагниченность ионов, соответственно, гадолиния и кобальта. Для описания вклада ионов кобальта в полную намагниченность GdCoO<sub>3</sub> в [54]

рассмотрена схема энергетических уровней ионов  $Co^{3+}$ , изображенная на рисунке 35.





Рисунок 35. Набор низкоэнергетических термов кластера  $CoO_6$  для  $d^5$  (a),  $d^6$  (b) и  $d^7$  (c) электронных конфигураций в кристаллическом поле. Для стехиометрического образца  $GdCoO_3$  при T = 0 заселен только низший низкоспиновый терм  $d^{6-1}A_1$ , все остальные уровни свободны.

При низких температурах ионы кобальта в GdCoO<sub>3</sub> существуют в немагнитном LS-состоянии, и основным термом является низкоспиновый синглет  ${}^{1}$ A<sub>1</sub>, отделенный от триплетного подуровня  $\tilde{J} = 1$  высокоспинового состояния  ${}^{5}$ T<sub>2g</sub> спиновой щелью  $\Delta_{s}$ . При  $\Delta_{s} = 150$  K, положение термов соответствует данным, полученным для LaCoO<sub>3</sub> в работах [9, 42, 53]. Так как ионный радиус гадолиния меньше ионного радиуса лантана, то возникает эффект химического давления, что приводит к стабилизации низкоспинового состояния и увеличению спиновой щели. Ниже мы найдем спиновую щель и ее температурную зависимость из моделирования экспериментальных данных по восприимчивости ионов Co<sup>3+</sup>

простыми расчетами в теории кристаллического поля. Поскольку дальнего магнитного порядка в наших образцах нет при T > 4K, взаимодействие ионов кобальта  $J_{Co-Co}$  достаточно учесть в простейшем приближении среднего поля, что сводит задачу вычисления восприимчивости к одноионному приближению.

Каждый подуровень с ненулевым полным моментом для N = 6 на рисунке 35 мультиплеты с эффективным расщепляется на зеемановские полем, определяемым суммой внешнего и молекулярного полей. Статистическая сумма ионов Со<sup>3+</sup> для одного GdCoO<sub>3</sub> моля с энергетическими уровнями, соответствующими 35. представлена схеме рисунке В виде: на  $Z = [1 + e^{-\beta \Delta_S} + e^{-\beta \Delta_S} \cdot 2ch(g_1 \mu_B \tilde{B}\beta + 2Jz \langle \mu \rangle \beta) +$  $+e^{-\beta\left(\Delta_{S}+2\tilde{\lambda}\right)}+e^{-\beta\left(\Delta_{S}+2\tilde{\lambda}\right)}\cdot 2ch\left(g_{2}^{\prime}\mu_{B}\tilde{B}\beta+2Jz\left\langle \mu\right\rangle \beta\right)+$  $+e^{-\beta(\Delta_{S}+2\tilde{\lambda})}\cdot 2ch(g_{2}''\mu_{B}\tilde{B}\beta+2Jz\langle\mu\rangle\beta)+$ (15) $+3e^{-\beta\left(\Delta_{S}+5\tilde{\lambda}\right)}+e^{-\beta\left(\Delta_{S}+5\tilde{\lambda}\right)}\cdot 2ch\left(g_{3}'\mu_{B}\tilde{B}\beta+2Jz\langle\mu\rangle\beta\right)+$  $+e^{-\beta\left(\Delta_{S}+5\tilde{\lambda}\right)}\cdot 2ch\left(g_{3}''\mu_{B}\tilde{B}\beta+2Jz\langle\mu\rangle\beta\right)]^{N_{A}},$ 

где N<sub>A</sub> – число Авогадро,  $\tilde{\lambda}$  - константа эффективного спин-орбитального взаимодействия,  $\tilde{B}$  - значение приложенного магнитного поля,  $k_{\scriptscriptstyle B}$  - постоянная Больцмана,  $\beta = 1/k_B T$  и  $\mu_B$  - магнетон Бора. Факторы Ланде следующие: для триплета  $\tilde{J} = 1$   $g_1 = 3.4$ , для квинтета  $\tilde{J} = 2$   $g'_2 = 3.1$  и  $g''_2 = 1.8$ , для септета  $\tilde{J} = 3$  $g'_{3} = 0.6$  и  $g''_{3} = 1.7$ ,  $\tilde{\lambda} = 185$  К. [53]. Намагниченность  $M = N_{A} \langle \mu \rangle$  в единицах среднего магнитного момента на спин получается обычным дифференцированием. Антиферромагнитное взаимодействие J<sub>Co-Co</sub> между ионами кобальта было рассмотрено В модельных вычислениях магнитной восприимчивости LaCoO<sub>3</sub> [9, 45] и аналогичное приближение было принято в [54] для GdCoO<sub>3</sub>. Согласно [9], J<sub>Co-Co</sub> = -27,5 К. В процедуре подгонки высокотемпературной магнитной восприимчивости было также включено обменное взаимодействие Gd-Co. Оценка параметра J<sub>Gd-Co</sub> дала значение менее 1 К. Для высокотемпературной восприимчивости ионов Со, это взаимодействие ничтожно мало. Тоже самое касается и обменного взаимодействия Gd-Gd, рассматриваемого в предыдущем разделе, J<sub>Gd-Gd</sub> = - 0.11 К. Еще одна причина, по которой можно пренебречь низкотемпературной намагниченностью Gd – из-за нулевого магнитного момента низкоспинового состояния ионов Co<sup>3+</sup>. Поэтому в дальнейших рассуждениях обменным взаимодействием Gd-Co можно пренебречь.

Предполагая, что необходимо рассмотреть только взаимодействие ближайших соседей и используя приближение среднего поля, можно найти вклад обмена в эффективное поле для расщепленных высокоспиновых состояний триплета, квинтета и септета, задаваемого выражением  $\varepsilon_{exch} = 2J \langle \mu \rangle zm_s$ , где  $J = J_{Co-Co}$  - обменное взаимодействие, *z* - координационное число. Введение энергии антиферромагнитного обмена приводит к самосогласованному выражению для намагниченности на спин

$$\frac{\langle \mu \rangle}{\mu_{B}} = \frac{2 \sinh\left(\frac{y_{1}}{T}\right) g_{1} + 2 \exp\left(-\frac{2\tilde{\lambda}}{T}\right) \left[\sinh\left(\frac{y_{2}'}{T}\right) g_{2}' + \sinh\left(\frac{y_{2}'}{T}\right) g_{2}''\right] + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right) \left[\sinh\left(\frac{y_{3}'}{T}\right) g_{3}' + \sinh\left(\frac{y_{3}'}{T}\right) g_{3}''\right]}{1 + \exp\left(\frac{\Delta_{S}}{T}\right) + \exp\left(-\frac{2\tilde{\lambda}}{T}\right) + 3 \exp\left(-\frac{5\tilde{\lambda}}{T}\right) + 2 \cosh\left(\frac{y_{1}}{T}\right) + 2 \exp\left(-\frac{2\tilde{\lambda}}{T}\right) \left[\cosh\left(\frac{y_{2}'}{T}\right) + \cosh\left(\frac{y_{2}''}{T}\right)\right] + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right) \left[\cosh\left(\frac{y_{3}'}{T}\right) + \cosh\left(\frac{y_{3}'}{T}\right)\right] + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right) \left[\cosh\left(\frac{y_{3}'}{T}\right) + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right)\right] \left[\cosh\left(\frac{y_{3}'}{T}\right) + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right)\right] + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right) \left[\cosh\left(\frac{y_{3}'}{T}\right) + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right)\right] \left[\cosh\left(\frac{y_{3}'}{T}\right) + 2 \exp\left(-\frac{5\tilde{\lambda}}{T}\right)\right]$$

 $y_1 = g_1 \mu_B \tilde{B} + 2J_Z \langle \mu \rangle$ ,  $y'_2$ ,  $y''_2$ ,  $y''_3$  и  $y''_3$  - получены из  $y_1$  при замене  $g_1$  на  $g'_2$ ,  $g''_2$ ,  $g''_3$ ,  $g''_3$ , соответственно. Уравнение самосогласования (16) может быть записано в виде

$$\frac{\langle \mu \rangle}{\mu_{B}} = \exp(-\beta \Delta_{s}) Z^{-1} \{2 \sinh(y_{1})g_{1} + 2 \exp(-2\tilde{\lambda}\beta) [\sinh(y_{2}')g_{2}' + \sinh(y_{2}'')g_{2}''] + 2\exp(-5\tilde{\lambda}\beta) [\sinh(y_{3}')g_{3}' + \sinh(y_{3}'')g_{3}'''] \}$$
(17)

Если пренебречь спин-орбитальным взаимодействием, все высокоспиновые подуровни соединятся вместе в один высокоспиновый терм со спином S = 2, орбитальным моментом L = 1 и полной кратностью вырождения  $g_{HS} = 15$ , и выражение (17) заметно упростится

$$\frac{\langle \mu \rangle}{g\mu_B} = \frac{6(\sinh x + 2\sinh 2x)}{3 + \exp(\beta \Delta_S) + 6(\cosh x + \cosh 2x)},$$
(18)

где  $x = g \mu_B \tilde{B} \beta + J_Z \langle \mu \rangle \beta$ ,  $\beta = 1/k_B T$  и g = 2 – чисто спиновый фактор Ланде. Тогда выражение для молярной магнитной восприимчивости кобальта можно записать в форме закона Кюри-Вейсса с эффективной "константой" Кюри и температурой:

$$\chi_{Co} = N_A \frac{\partial \langle \mu \rangle}{\partial B} = N_A \frac{C_{eff}}{3k_B (T - \Theta_{eff})}.$$
(19)

 $C_{eff} = g^2 \mu_B^2 S(S+1) n_{HS}$  - эффективная константа Кюри, зависящая от заселенности высокоспинового состояния, а  $n_{HS}$  выражается формулой (5). Эффективная температура Кюри

$$\Theta_{eff} = \frac{J_{Co-Co} z S(S+1)}{3k_B} n_{HS} \,.$$
(20)

Как можно видеть из этих выражений, эффективный магнитный момент кобальта и температура Кюри зависят от температуры. Это происходит потому, что возбужденное высокоспиновое магнитное состояние отделено от немагнитного низкоспинового состояния энергетической щелью  $\Delta_s$ . Спиновая щель, зависящая от температуры, определяет магнитную восприимчивость ионов Co<sup>3+</sup>. При низких температурах, концентрация  $n_{Hs}$  стремится к нулю. Тоже самое происходит и с магнитной восприимчивостью ионов Co<sup>3+</sup> (рисунок 36).



Рисунок 36. Температурная зависимость магнитной восприимчивости ионов Co<sup>3+</sup>. Результат вычислений восприимчивости ионов Co<sup>3+</sup> по закону Кюри-Вейсса с эффективным магнитным моментом, зависящим от температуры, показан сплошной линией. Точками показана магнитная восприимчивость Co<sup>3+</sup> как разница между экспериментальными данными и рассчитанными по формуле (13).

Отличительной способностью, как отмечалось во введении и главе 2, редкоземельных кобальтитов является их аномальное тепловое расширение. Согласно [13], температурные зависимости коэффициента расширения для LnCoO<sub>3</sub>, где Ln = La, Dy, Sm, Pr, Y, Gd и Nd, являются немонотонными и имеют максимум, расположение которого коррелирует с особенностями в поведении магнитной восприимчивости и электропроводности. Термическое расширение образца приводит к увеличению длины Co-O связи и, соответственно к понижению спиновой щели  $\Delta_s$ , так как спиновая щель определяется величиной кристаллического поля 10*Dq*. Для ряда редкоземельных кобальтитов было предложено аналитическое выражение для температурной зависимости спиновой щели [13]. Энергия  $\Delta_s(T)$  подгонялась при помощи степенной функции

$$\Delta_{s}(T) = \Delta_{0} \left[ 1 - \left( \frac{T}{T_{s}} \right)^{n} \right], \tag{21}$$

где  $\Delta_0$  - спиновая щель при T = 0, T<sub>S</sub> – температура при которой  $\Delta_s(T_s) = 0$ , то есть происходит спиновый кроссовер высокосинового и низкоспинового состояний. Т<sub>х</sub> и *п* являются подгоночными параметрами. Согласно [13], для GdCoO<sub>3</sub>  $\Delta_0$  = 2260 K, T<sub>s</sub> = 717 К, *n* = 3.39. Вычисление спиновой щели для GdCoO<sub>3</sub> при низких температурах, используя уравнение Берча-Мурнагана [52] приводит к значению  $\Delta_s \approx 2000$  К, которое согласуется с полученным в [13]. Сплошная линия на рисунке 36 показывает результаты вычислений  $\chi_{Co}$ , используя выражение (19), при  $\Delta_0 = 2300$  К,  $T_S = 800$  К и n = 4. Параметры  $\Delta_0$ ,  $T_S$  и n были найдены полученной подгонкой К экспериментально зависимости магнитной восприимчивости ионов кобальта, изображенной на рисунке 36 точками. Качественно, результаты, полученные в данной работе, идентичны результатам, полученным в [13]. Однако, более широкий интервал температур, особенно в высокотемпературной области, где вклад от кобальта существенно растет, делает наши данные более надежными, чем результаты [13] для более узкого интервала температур.

Кроме того, отличие в количественной оценке возникает из-за различий в предположениях для возбужденного магнитного состояния. Нами в качестве ближайшего возбужденного уровня берется высокоспиновый терм с кратностью вырождения  $g_{HS} = 15$ , в то время как в работе [13] в качестве предполагаемой модели рассматривается промежуточноспиновое состояние со спином S = 1. На рисунке 37 показано изменение спиновой щели с увеличением температуры для полученных значений  $\Delta_0 = 2300$  K,  $T_S = 800$  K и n = 4.



Рисунок 37. Температурная зависимость спиновой щели  $\Delta_s$ .

Выше 800К высокоспиновое состояние лежит ниже по энергии, хотя за счет конечности температуры по-прежнему заселены оба терма с разными мультиплетностями.

#### 4.3. Молярная теплоемкость

Измерения теплоемкости выполнены Верещагиным Сергеем Николаевичем (ИХХТ г. Красноярск).

Рисунок 38 показывает температурную зависимость теплоемкости ( $C_p$ ) для двух образцов, приготовленных по различным технологиям. Оба образца показывают широкий пик теплоемкости с максимумом при T = 706 К. Наблюдаемое отклонение между значениями теплоемкости для данных образцов не превышает



Рисунок 38. Температурная зависимость измеренной теплоемкости С<sub>P</sub>.

четырех процентов и находится в пределах погрешности используемого метода. Обратим внимание, что максимум теплоемкости не совпадает с точкой спинового кроссовера 800К, что заставляет искать другой механизм формирования этого максимума. Положение пика теплоемкости и ее значение согласуются с данными, представленными в [27].

### 4.4. Сравнение экспериментальных данных с результатами LDA + GTB – расчета электронной структуры и диэлектрической щели

Расчеты электронной структуры и температурной зависимости диэлектрической щели с учетом сильных электронных корреляций многоэлектронным методом LDA+GTB проведены Орловым Юрием Сергеевичем (ИФ СО РАН, лаборатория ФМЯ) [52, 54].

Результаты расчетов квазичастичного спектра  $GdCoO_3$  при T = 0 представлены на рисунке 39.



Рисунок 39. Квазичастичный спектр при T = 0. GdCoO<sub>3</sub> – диэлектрик с переносом заряда и шириной диэлектрической щели  $E_g \approx 0.5$  эВ. G (0,0,0), M ( $\pi,\pi,0$ ), X ( $\pi,0,0$ )/( $0,\pi,0$ ), R ( $\pi,\pi,\pi$ ) – симметричные точки зоны Бриллюэна. Более/менее темные цвета дисперсионных кривых соответствуют большей/меньшей интенсивности квазичастичного спектра. Появление сильной интенсивности соответствует вырождению нескольких уровней.

С повышением температуры квазичастичный спектр претерпевает существенные изменения. Увеличивается термическая заселенность подуровней

 $\tilde{J} = 1$  и  $\tilde{J} = 2^{-5}T_2$  - терма и, как следствие, появляются вклады от всевозможных переходов, не запрещенных правилом отбора по спину и проекции спина, что приводит к появлению внутрищелевых состояний И уменьшению Результаты диэлектрической щели. самосогласованного расчета зонной структуры и положения химического потенциала (штриховые линии) для температур 750 К и 800 К представлены на рисунке 40. Спектральный вес и ширина внутрищелевой зоны пропорциональны заселенности подуровней  $\tilde{J} = 1$  и  $\tilde{J} = 2$  высокоспинового состояния, то есть зависят от  $\Delta_{\rm S}$ . При T = 750 K GdCoO<sub>3</sub> все еще сохраняет диэлектрические свойства (рисунок 40 (a)), ширина щели немногим более 0.2 эВ. Повышение температуры до 780 К приводит к перекрыванию зон и диэлектрическая щель исчезает вовсе (рисунок 40 (б)), GdCoO<sub>3</sub> приобретает металлические свойства.

Необходимо отметить, что переход из диэлектрического состояния в металлическое, а вернее, в полуметаллическое, не является в GdCoO<sub>3</sub> фазовым переходом, диэлектрическая щель не является термодинамическим параметром порядка.



Рисунок 40. Влияние температурной заселенности высокоспинового состояния при высокой температуре. (а) При T = 750 К, внутрищелевые состояния наблюдаются как вблизи уровня химического потенциала, так и внутри валентной зоны и зоны проводимости; (b) при T = 800 К, зонная структура имеет полуметаллический вид с электронами и дырками на уровне химического потенциала. Пунктирная линия показывает химический потенциал.

По результатам расчетов зонной структуры построена зависимость диэлектрической щели *E<sub>g</sub>* от температуры (рисунок 41) и проведено сравнение с экспериментальными данными по теплоемкости.



Рисунок 41. Температурные зависимости теплоемкости и вычисленной диэлектрической щели *E*<sub>g</sub>.

Из-за зависимости спиновой щели  $\Delta_{\rm S}$  от температуры в GdCoO<sub>3</sub>, диэлектрическая щель  $E_g$  уменьшается с ростом температуры и стремится к нулю при  $T_{IMT} \approx 780$  К. Из рисунка 41 видно, что размытый максимум температурной зависимости теплоемкости C<sub>P</sub> связан с переходом диэлектрик – металл. Размытость максимума теплоемкости, также как и перехода диэлектрик – металл, имеет место в связи с сильными температурными флуктуациями электронов при малой диэлектрической щели вблизи  $T_{IMT}$ .

#### ГЛАВА 5. ЗАВИСИМОСТЬ СПИНОВОЙ ЩЕЛИ ОТ ОБЪЕМА ДЛЯ СОСТАВОВ La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>

# 5.1. Влияние химического давления на спиновую щель: оценка из уравнения Берча-Мурнагана

При замещении лантана редкоземельным ионом с другим ионным радиусом возникает дополнительное химическое давление, которое действует эквивалентно внешнему. Поэтому, если замещающий элемент имеет ионный радиус, меньший, чем у РЗМ-ионов исходного соединения, замещение будет приводить к дополнительной стабилизации низкоспинового состояния или другими словами к увеличению спиновой щели  $\Delta_s$ . Причиной этого является рекордная сжимаемость Со – О связи в кобальт-оксидных соединениях [64]. Значение  $\Delta_s$ , определяемое как разность энергий высокоспинового и низкоспинового состояний, для GdCoO<sub>3</sub> можно найти из следующих соображений. Эти энергии могут быть представлены через внутриионные параметры Рака (кулоновского взаимодействия) и величину кристаллического поля  $\Delta = 10$  Dq. Предположив, что параметры Рака для Co<sup>3+</sup> в LaCoO<sub>3</sub> и GdCoO<sub>3</sub> одинаковы, выражаем зависимость  $\Delta_s$  от межатомного расстояния, определяемого величиной 2 $\Delta$ :

$$\Delta_{\rm s} = \Delta_{\rm at} + 2\Delta, \tag{22}$$

где  $\Delta_{at}$  – величина щели, определяемая энергией кулоновского взаимодействия. В результате лантаноидного сжатия параметр  $\Delta$  различается для LaCoO<sub>3</sub> и GdCoO<sub>3</sub> и можно записать

$$\Delta_s(Gd) = \Delta_s(La) + 2(\Delta(Gd) - \Delta(La))$$
<sup>(23)</sup>

Величину дополнительного химического давления Р, возникающего при лантаноидном сжатии, находим из уравнения состояния Бёрча – Мурнагана [65,66]

$$P = \frac{3}{2} B_0 \left[ \left( \frac{V_0}{V} \right)^{7/3} - \left( \frac{V_0}{V} \right)^{5/3} \right] \times \left\{ 1 - \frac{3}{4} (4 - B_0) \left[ \left( \frac{V_0}{V} \right)^{2/3} - 1 \right] \right\},$$
(24)

где  $B_0$  и  $B_0'$  - эмпирические параметры, имеющие смысл изотермического модуля всестороннего сжатия и его первой производной по давлению. Для перовскитоподобных кобальтитов  $B_0' = 4$ , что приводит к упрощению формулы (24)

$$P = \frac{3}{2} B_0 \left[ \left( \frac{V_0}{V} \right)^{7/3} - \left( \frac{V_0}{V} \right)^{5/3} \right]$$
(25)

Для LaCoO<sub>3</sub> B<sub>0</sub> = 150 ГПа [64], V<sub>0</sub> – объем элементарной ячейки LaCoO<sub>3</sub>, a V – объем элементарной ячейки для лантаноида Ln. Для LaCoO<sub>3</sub> V<sub>0</sub> = 222,83 Å<sup>3</sup>, для GdCoO<sub>3</sub> V = 210,2 Å<sup>3</sup>. Отсюда получаем P = 9,81 ГПа. Сжатие решетки приводит к увеличению кристаллического поля. Зависимость кристаллического поля от давления можно представить виде:

$$\Delta(P) = \Delta(0) + \alpha_{\Delta}P \tag{26}$$

Барическую производную α<sub>Δ</sub> можно рассматривать как эмпирический параметр. В работе [67] эта величина была определена из исследований спинового кроссовера (перехода  $HS \rightarrow LS$ ) в магнезиовюстите  $Mg_{0.75}Fe_{0.25}O$ , который обладает похожим типом химической связи И похожим механизмом формирования электронной структуры. Для оценки примем, что для GdCoO<sub>3</sub> величина  $\alpha_{\Delta}$  такая же и равна  $\alpha_{\Delta} = 0,0078$  эВ/ГПа. Тогда величину спиновой щели в GdCoO<sub>3</sub> получаем равной  $\Delta_s \approx 2000$  К. Для других лантаноидов по известной величине объема ячейки можно также оценить величину спиновой щели (таблица 2).

| Лантаноид | V(Ln), $Å^3$ | P(V), GP | $\Delta_{\rm s}$ , K |
|-----------|--------------|----------|----------------------|
| La        | 222.83       | 0        | 150                  |
| Pr        | 217.74       | 3,6      | 810                  |
| Nd        | 215.24       | 5,6      | 1160                 |
| Sm        | 212.74       | 7,6      | 1500                 |
| Gd        | 210.23       | 9,8      | 2000                 |
| Tb        | 208.49       | 11,4     | 2200                 |

| Dy | 206.9  | 12,9 | 2500 |
|----|--------|------|------|
| Но | 205.45 | 14,3 | 2750 |
| Er | 204.03 | 15,8 | 3000 |
| Tm | 220.63 | 17,2 | 3300 |
| Yb | 201.29 | 18,7 | 3500 |
| Lu | 200.13 | 20   | 3800 |

Таблица 2. Объемы элементарных ячеек для лантаноидного ряда и рассчитанные значения спиновой щели.

На основании табличных данных построены графические зависимости (рисунок 42) объема элементарной ячейки и величины спиновой щели в зависимости от замещающего лантан редкоземельного элемента.



Рисунок 42. Зависимость объема элементарной ячейки кобальтита  $LnCoO_3$  V(Ln) от замещающего лантан редкоземельного иона (черные треугольники) и аналогичная зависимость спиновой щели  $\Delta_s$  (Ln) (белые треугольники).

К аналогичной стабилизации низкоспинового состояния и увеличению спиновой щели  $\Delta_s$  приводит частичное замещение одного лантаноида на другой с меньшим ионным радиусом. Так, в соединении La<sub>1-x</sub>Eu<sub>x</sub>CoO<sub>3</sub> при замещении La на ион Eu с увеличением концентрации х лучше проявляются и дольше сохраняются

с ростом температуры диэлектрические свойства [28]. Мы получили и исследовали образцы с замещением лантана на гадолиний для соединений  $La_{1-x}Gd_xCoO_3$  (x = 0.05, 0.1, 0.2. 0.5). Результаты структурного анализа и величины объема были приведены в параграфе 3.3. Используя эти данные, приведенные в таблице 3, мы оценили из уравнения Берча-Мурнагана величины химических давлений и зависимость спиновой щели от концентрации замещения (рисунок 43).

| Состав                    | <b>V/Z,</b> Å <sup>3</sup> | Параметры ячейки, Å             |
|---------------------------|----------------------------|---------------------------------|
| LaCoO <sub>3</sub>        | 56.02 тригональная, Z=6    | 5.44459(2) 13.0931(1)           |
| $La_{0.95}Gd_{0.05}CoO_3$ | 55.79 тригональная, Z=6    | 5.43871(7) 13.0675(2)           |
| $La_{0.9}Gd_{0.1}CoO_3$   | 55.60 тригональная (55%)   | 5.4337(1) 13.0467(5)            |
|                           | 55.68 ромбическая (46%)    | 5.4325(3) 5.3739(3) 7.6301(4)   |
| $La_{0.8}Gd_{0.2}CoO_3$   | 55.38 ромбическая, Z=4     | 5.4151(1) 5.3715(1) 7.6156(2)   |
| $La_{0.5}Gd_{0.5}CoO_3$   | 54.16 ромбическая, Z=4     | 5.3436(10) 5.3611(5) 7.5614(12) |
| GdCoO <sub>3</sub>        | 52.54 ромбическая, Z=4     | 5.2256(3) 5.3935(2) 7.4568(1)   |

Таблица 3. Удельный объем и параметры ячейки образцов, полученных золь-гель методом.


Рисунок 43. Зависимость объема элементарной ячейки от концентрации Gd в  $La_{1-x}Gd_xCoO_3$  (x = 0.05, 0.1, 0.2. 0.5) (белые квадраты) и аналогичная зависимость спиновой щели  $\Delta_s$  (черные квадраты).

Из рисунка 43 видно, что подбором состава можно управлять величиной спиновой щели и получать максимум на температурной зависимости восприимчивости в твердых растворах La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> в широком интервале температур.

## 5.2. Высокотемпературное магнитное поведение La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>: определение температурно и концентрационно зависящей спиновой щели

В данном параграфе мы повторим определение спиновой щели с помощью высокотемпературных магнитных измерений, как это было сделано в гл. 4 для GdCoO<sub>3</sub>. В результате мы найдем температурные зависимости спиновой щели при разных концентрациях гадолиния.

Температурные зависимости обратной магнитной восприимчивости образцов  $La_{1-x}Gd_xCoO_3$  (x = 0.2, 0.5) в широком температурном диапазоне представлены на рисунке 44 для состава  $La_{0.8}Gd_{0.2}CoO_3$  и на рисунке 45 для

состава La<sub>0.5</sub>Gd<sub>0.5</sub>CoO<sub>3</sub>. Для GdCoO<sub>3</sub> магнитная восприимчивость в интервале температур от 2 до 1000 К рассматривалась выше.



Рисунок 44. Температурная зависимость обратной магнитной восприимчивости  $\chi^{-1}$  для образца состава La<sub>0.8</sub>Gd<sub>0.2</sub>CoO<sub>3</sub>, измеренной в поле 5 кЭ (темные круги) и вклад ионов Gd<sup>3+</sup> (серая линия). Рассчитанная обратная восприимчивость  $\chi^{-1}_{La_{0.8}Gd_{0.2}CoO_3}$  (сплошная черная кривая) с эффективным моментом Co<sup>3+</sup>, зависящим от температуры.



Рисунок 45. Температурная зависимость обратной магнитной восприимчивости  $\chi^{-1}$  для образца состава La<sub>0.5</sub>Gd<sub>0.5</sub>CoO<sub>3</sub>, измеренной в поле 5 кЭ (темные круги) и вклад ионов Gd<sup>3+</sup> (серая линия). Рассчитанная обратная восприимчивость  $\chi^{-1}_{La_{0.5}Gd_{0.5}CoO_3}$  (сплошная черная кривая) с эффективным моментом Co<sup>3+</sup>, зависящим от температуры.

Так как лантан является немагнитным материалом, полная намагниченность замещенных твердых растворов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> может быть, как и в случае с недопированным GdCoO<sub>3</sub>, представлена суммой двух членов:

$$M_{La_{L_{a}}Gd_{x}CoO_{3}} = M_{Gd} + M_{Co} , \qquad (27)$$

где  $M_{Gd}$  и  $M_{Co}$  - соответственно намагниченности ионов гадолиния и ионов кобальта. Мы вычитаем из полной восприимчивости парамагнитный вклад

гадолиния с учетом его концентрации и находим из измерений вклад от кобальта.

Для описания вклада ионов  $\text{Co}^{3+}$  в полную намагниченность  $\text{La}_{1-x}\text{Gd}_x\text{CoO}_3$  необходимо рассмотреть энергетические уровни ионов  $\text{Co}^{3+}$  в кристаллическом поле. Основное состояние представлено низкоспиновым синглетом  ${}^{1}\text{A}_1$ , отделенным от высокоспинового состояния  ${}^{5}\text{T}_{2g}$  спиновой щелью  $\Delta_{\text{S}}$ . При  $\Delta_{\text{S}} = 150$  К и x = 0, положение терма соответствует данным, полученным для  $\text{LaCoO}_3$  [9, 42, 53]. Из-за значительной сжимаемости Со-О связи, замещение одного редкоземельного иона на другой ион с меньшим ионным радиусом, приводит, в случае лантаноидов, к возникновению химического давления, эквивалентного внешнему давлению [64]. Подобное замещение стабилизирует низкоспиновое состояние, увеличивая значение спиновой щели.

Используя формулы 19 и 20 с "эффективными" константой и температурой Кюри, зависящими от заселенности высокоспинового состояния (4), учитывая температурную зависимость спиновой щели (21), можно рассчитать подгоночные параметры  $T_s$  и *n*. Результаты вычислений обратной магнитной восприимчивости для составов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0.2, 0.5) и экспериментальные данные представлены на рисунках 44 и 45. Значения  $\Delta_0$  и подгоночных параметров указаны в таблице 4.

На рисунке 46 представлены температурные зависимости спиновой щели  $\Delta_s$ , рассчитанные на основании значений подгоночных параметров, полученных из магнитной восприимчивости  $\chi$  для образцов состава La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0.2, 0.5, 1).

Сравнивая значения спиновой щели  $\Delta_0$ , полученные в результате обработки высокотемпературных данных по магнитной восприимчивости и при использовании уравнения Берча-Мурнагана, рассмотренного в предыдущем параграфе, видно, что наблюдается хорошее согласие в значениях, полученных двумя разными способами (рисунок 47).

|                                                      | $\Delta_0$ | $T_S$ | n   |
|------------------------------------------------------|------------|-------|-----|
|                                                      | (K)        | (K)   |     |
| La <sub>0.8</sub> Gd <sub>0.2</sub> CoO <sub>3</sub> | 600        | 600   | 3.5 |
| La <sub>0.5</sub> Gd <sub>0.5</sub> CoO <sub>3</sub> | 1300       | 750   | 4   |
| GdCoO3                                               | 2300       | 800   | 4   |

Таблица 4. Значения подгоночных параметров для расчетной магнитной восприимчивости соединений La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0.2, 0.5, 1).



Рисунок 46. Температурная зависимость спиновой щели  $\Delta_s$ , рассчитанной на основании значений подгоночных параметров, полученных из магнитной восприимчивости  $\chi$  для образцов состава La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0.2, 0.5, 1).



Рисунок 47. Сравнение значений спиновой щели  $\Delta_0$  (спиновая щель при T = 0) в зависимости от объема элементарной ячейки для составов La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub> (x = 0, 0.2, 0.5, 1), полученных из уравнения Берча-Мурнагана (круги) и по измерениям магнитной восприимчивости (квадраты) (21).

Таким образом, магнитные исследования твердых растворов составов  $La_{1-x}Gd_xCoO_3$  показали, что существует возможность контроля значения спиновой щели, изменяя объем элементарной ячейки. Хорошее согласие в результатах, полученных двумя независимыми методами, подтверждает правильность подходов при расчетах спиновой щели для составов  $La_{1-x}Gd_xCoO_3$  при различных *x*.

## выводы

- Методом твердофазного синтеза получена серия высококачественных поликристаллических образцов GdCoO<sub>3-δ</sub> и La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3-δ</sub> (x = 0,05; 0,1; 0,2; 0,5; 0,8). Содержание примесных фаз в GdCoO<sub>3-δ</sub> по данным рентгеноструктурного анализа не более 3%. Отклонение от стехиометрии в GdCoO<sub>3-δ</sub> мало (δ < 0,01).</li>
- 2. По данным рентгеновской дифракции обнаружено сосуществование двух типов доменов в GdCoO<sub>3</sub> при промежуточных температурах 200 ÷ 700 K, имеющих одинаковую симметрию решетки, но отличающихся параметром "b" и объемом элементарной ячейки кристаллической решетки. Согласно первопринципным GGA расчетам, эти домены соответствуют двум возможным состояниям GdCoO<sub>3</sub> с высокоспиновым и низкоспиновым состояниями Co<sup>3+</sup>.
- 3. Измерения температурных и полевых зависимостей намагниченности в  $GdCoO_3$  в области низких температур выявили спин флоп переход. Построена зависимость температуры Нееля от величины приложенного магнитного поля,  $T_N = 3.3$  К при H = 0. Магнитный порядок обусловлен упорядочением спинов  $Gd^{3+}$ . Определен параметр обменного взаимодействия  $J_{Gd-Gd} \approx -0.11$  К.
- 4. Для синтезированных образцов выполнены измерения магнитной восприимчивости в широком диапазоне температур 2 – 1000 К. Вычитанием парамагнитного вклада Кюри – Вейсса от ионов Gd<sup>3+</sup> найден вклад от ионов Со<sup>3+</sup>, немонотонно растущий с ростом температуры. Показано, что вклад от ионов Со<sup>3+</sup> может быть представлен обобщенным законом Кюри – Вейсса с моментом, эффективным магнитным пропорциональным доле высокоспиновых состояний Со<sup>3+</sup>. Из сравнения экспериментальных данных найдена температурная зависимость спиновой шели GdCoO<sub>3</sub>, обращающаяся в нуль в точке спинового кроссовера при  $T_s = 800$  K.

- Измерения молярной теплоемкости обнаружили пик с максимумом в точке T<sub>C</sub> = 706 К, вблизи которой, согласно теоретическим расчетам LDA + GTB, диэлектрическая щель обращается в нуль и происходит размытый переход диэлектрик – металл.
- 6. Установлена необычная большого коэффициента СВЯЗЬ аномально теплового расширения GdCoO<sub>3</sub> с изменением спинового состояния ионов Со<sup>3+</sup>. Тепловое расширение решетки приводит к уменьшению спиновой щели и росту концентрации высокоспиновых состояний. С другой стороны,  $\mathrm{Co}^{3+}$ больший ионный высокоспинового приводит радиус к дополнительному росту объема при нагревании. В результате вклад от флуктуаций мультиплетности в коэффициент теплового расширения на порядок превосходит обычный вклад от ангармонизма.
- 7. На основе уравнения состояния Берча Мурнагана сделана оценка зависимости спиновой щели от объема элементарной ячейки, возникающей из за лантаноидного сжатия в ряду LnCoO<sub>3</sub>. Экспериментальное определение спиновой щели для La<sub>0.2</sub>Gd<sub>0.8</sub>CoO<sub>3</sub>, La<sub>0.5</sub>Gd<sub>0.5</sub>CoO<sub>3</sub> и GdCoO<sub>3</sub> из высокотемпературных измерений магнитной восприимчивости подтвердило сделанную оценку и показало возможность управления величиной спиновой щели за счет изменения состава в твердых растворах La<sub>1-x</sub>Gd<sub>x</sub>CoO<sub>3</sub>.

## СПИСОК ЛИТЕРАТУРЫ

1. V. G. Bhide, D. S. Rajoria. Mossbauer Studies of the High-Spin-Low-Spin Equilibria and the Localized-Collective Electron Transition in  $LaCoO_3//$  Physical Review B. – 1972. – V.6. – No. 3. – P. 1021 – 1032.

 C. Y. Chang, B. N. Lin, H. C. Ku, Y. Y. Hsu. Occurrence and Variation of Spin-State Transitions in La<sub>1-x</sub>Eu<sub>x</sub>CoO<sub>3</sub> Cobaltates// Chinese Journal of Physics. – 2003.
 – V. 41. – P. 662 -670.

3. C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Gruninger, T. Lorenz. Evidence for a low-spin to intermediate-spin state transition in  $LaCoO_3//$  Physical Review B. – 2002. – V. 66. – No. 2. – article No 020402.

V. G. Bhide, D. S. Rajoria, Y.S. Reddy, G. Rama Rao, G.V. Subba Rao,
C.N.R. Rao. Localized-to-Itinerant Electron Transitions in Rare-Earth Cobaltates//
Physical Review B. – 1972. – V.28. – P. 1133 – 1136.

5. V. G. Bhide, D. S. Rajoria, Y.S. Reddy, G. Rama Rao, C.N.R. Rao. Spin-State Equilibria in Holmium Cobaltate// Physical Review B. – 1973. – V.8. – P. 5028 – 5034.

G. Thornton, F.C. Morrison, S. Partington, B.C. Tofield, D.E. Williams.
The rare earth cobaltates: localized or collective electron behavior?// Journal of Physics
C: Solid State Physics. – 1988. – V.21. – P. 2871 – 2880.

7. J.-Q. Yan, J.-S. Zhou, J. B. Goodenough. Bond-length fluctuations and the spin-state transition in  $LCoO_3$  (L = La, Pr, and Nd )// Physical Review B. – 2004. – V.69. – article No 134409.

8. Н.Б. Иванова, Н.В. Казак, С.R. Michel, А.Д. Балаев, С.Г. Овчинников. Низкотемпературное магнитное поведение редкоземельных кобальтитов GdCoO<sub>3</sub> и SmCoO<sub>3</sub>// Физика твердого тела. – 2007. – Т. 49. – №. 11. – С. 32 – 35.

M.J.R. Hoch, S. Nellutla, J. van Tol, Eun Sang Choi, Jun Lu, H. Zheng,
 J.F. Mitchell. Diamagnetic to paramagnetic transition in LaCoO<sub>3</sub>// Physical Review B. –
 2009. – V.79. – article № 214421.

10. Н.Б. Иванова, Н.В. Казак, С.R. Michel, А.Д. Балаев, С.Г. Овчинников, А.Д. Васильев, Н.В. Булина, Е.Б. Панченко. Влияние допирования стронцием и барием на магнитное состояние и электропроводность GdCoO<sub>3</sub>// Физика твердого тела. – 2007. – Т. 49. – №. 8. – С. 1427 – 1435.

11. P. G. Radaelli, S.-W. Cheong. Structural phenomena associated with the spin-state transition in  $LaCoO_3//$  Physical Review B. – 2002. – V.66. – article No 094408.

12. I. A. Nekrasov, S.V. Sreltsov, M.A. Korotin, V.I. Anisimov. Influence of rare-earth ion radii on the low-spin to intermediate-spin state transition in lanthanide cobaltite perovskites:  $LaCoO_3$  versus  $HoCoO_3$ // Physical Review B. – 2003. – V.68. – article No 235113.

13. K. Knizek, Z. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, T.T.M. Palstra. Structural anomalies associated with the electronic and spin transitions in  $LnCoO_3$ // European Physical Journal B. – 2005. – V.47. – P. 213 – 220.

14. W. Wei-Ran, X. Da-Peng, S. Wen-Hui, D. Zhan-Hui, X. Yan-Feng, S. Geng-Xin. Raman Active Phonons in  $RCoO_3$  (R = La, Ce, Pr, Nd, Sm, Eu, Gd and Dy) Perovskites// Chinese Physics Letters. – 2005. – V.22. – P. 2400 – 2402.

15. K. Knizek, P. Novak, Z. Jirak. Spin state of  $LaCoO_3$ : Dependence on  $CoO_6$  octahedra geometry// Physical Review B. – 2005. – V.71. – article  $N_{20}$  054420.

16. L. Runru, X. Dapeng, L. Shuang, L. Zhe, X. Yanfeng, W. Deyong, S. Wenhui. Solid-state synthesis and properties of  $SmCoO_3//$  Frontiers of Chemistry in China. – 2006. – V.4. – P. 398 – 401.

17. K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, and T. Lorenz. Anomalous expansion and phonon damping due to the Co spin-state transition in  $RCoO_3$  (R = La, Pr, Nd, and Eu)// Physical Review B. – 2008. – V.78. – article No 134402.

18. J. A. Alonso, M. J. Martinez-Lope, C. de la Calle, V. Pomjakushin. Preparation and structural study from neutron diffraction data of  $RCoO_3$  (R = Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu) perovskites// Journal of Materials Chemistry. – 2006. – V.16. – P. 1555 – 1560. 19. Y. Ren, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, J. D. Jorgensen, S. Short, H. Kim, Th. Proffen, S. Chang, R. J. McQueeney. Spin-state transitions in PrCoO3 studied with neutron powder diffraction// Physical Review B. -2011. - V.84. - article No 214409.

20. K. Asai, P. Gehring, H. Chou, G. Shirane. Temperature-induced magnetism in LaCo0<sub>3</sub>// Physical Review B. – 1989. – V.40. – P. 10982 – 10985.

21. M. Itoh, M. Mori, S. Yamaguchi, Y. Tokura. NMR study of spin state of  $RCoO_3$  (R = Pr, Nd, Sm, and Eu)// Physica B. – 1999. – V. 259-261. – P. 902 – 903.

22. M. Itoh, J. Hashimoto, S. Yamaguchi, Y. Tokura. Spin state and metal–insulator transition in  $LaCoO_3$  and  $RCoO_3$  (R=Nd, Sm and Eu)// Physica B. – 2000. – V.281-282. – P. 510 – 511.

23. Y. Im, K. H. Ryu, K. H. Kim, C. Hyun Yo. Structural, magnetic, and electrical properties of nonstoichiometric perovskite  $Ho_{1-x}Ca_xCoO_{3-y}//$  Journal of Physics and Chemistry of Solids. – 1997. – V.58. – P. 2079 – 2083.

24. M. Itoh, M. Sugahara, I. Natori, K. Motoya. Spin State and Hyperfine Interaction in  $LaCoO_3$ : NMR and Magnetic Susceptibility Studies// Journal of the Physical Society of Japan. – 1995. – V .64. – P. 3967 – 3977.

25 S. Yamaguchi, Y. Okimoto, Y. Tokura. Bandwidth dependence of insulator-metal transitions in perovskite cobalt oxides// Physical Review B. – 1996. – V.54. – P. 11022 – 11025.

26. T. Vogt, P. M. Woodward, P. Karen, B. A. Hunter, P. Henning, A. R. Moodenbaugh. Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo2O5// Physical Review Letters. – 2000. – V.84. – P. 2969 – 2972.

27. M. Tachibana, T. Yoshida, H. Kawaji, T. Atake, E. Takayama-Muromachi. Evolution of electronic states in  $RCoO_3$  (R = rare earth): Heat capacity measurements// Physical Review B. – 2008. – V.77. – article No 094402. 28. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, T. Lorenz. Spin-state transition and metal-insulator transition in  $La_{1-x}Eu_xCoO_3//$  Physical Review B. – 2005. – V.71. – article No 014443.

29. G. Demazeau, M. Pouchard, P. Hagenmuller. Sur de nouveaux composés oxygénés du cobalt +III dérivés de la perovskite// Journal of Solid State Chemistry – 1974. – V.9. – P. 202 -209.

30. S. Stølen, F. Grønvold, H. Brinks, T. Atake, H. Mori. Energetic of the spin transition in LaCoO<sub>3</sub>// Physical Review B. – 1997. – V.55. – P. 4103 – 14106.

31. В.А. Боков. Физика магнетиков// ФТИ им. А.Ф. Иоффе РАН. – СПб. – Невский диалект. – 2002. – С. 272. (с. 21).

32. M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng. Spin State Transition in LaCoO<sub>3</sub> Studied Using Soft X-ray Absorption Spectroscopy and Magnetic Circular Dichroism// Physical Review Letters. – 2006. – V.97. – article  $N_{2}$  176405.

33. Z. Ropka, R. J. Radwanski. The Jahn–Teller-effect formation of the non-magnetic state of the  $Co^{3+}$  ion in LaCoO<sub>3</sub>// Physica B. – 2002. – V. 312-313. – P. 777 – 779.

34. J. B. Goodenough. An interpretation of the magnetic properties of the perovskite-type mixed crystals  $La_{1-x}Sr_xCoO_{3-\lambda}//$  Journal of Physics and Chemistry of Solids.– 1958. – V.6. – P. 287 – 297.

35. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano. Electronic structure and temperature-induced paramagnetism in  $LaCoO_3$ // Physical Review B. – 1977. – V.55. – P. 4257 – 4266.

36. M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Potze, G.
A. Sawatzky, H. Eisaki, S. Uchida. Electronic structure and spin-state transition of LaCoO<sub>3</sub>// Physical Review B. – 1993. – V.47. – P. 16124 – 16130.

37. Kichizo Asai<sup>1</sup>, Atsuro Yoneda<sup>1</sup>, Osamu Yokokura<sup>1</sup>, J. M. Tranquada<sup>2</sup>, G. Shirane<sup>2</sup>, and Key Kohn<sup>3</sup>. Two Spin-State Transitions in LaCoO<sub>3</sub>// Journal of the Physical Society of Japan. -1998. - V.67. - P. 290 - 296.

38. R. F. Klie, J. C. Zheng, Y. Zhu, M. Varela, J. Wu, C. Leighton. Direct Measurement of the Low-Temperature Spin-State Transition in LaCoO<sub>3</sub>// Physical Review Letters. – 2007. – V.99. – article № 047203.

39. G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, T. T. M. Palstra.
Evidence for orbital ordering in LaCoO<sub>3</sub>// Physical Review B. – 2003. – V.67. – article № 224423.

40. D. Phelan, J. Yu, D. Louca. Jahn-Teller spin polarons in perovskite cobaltites// Physical Review B. – 2008. – V.78. – article № 094108.

41. N. Sundaram, Y. Jiang, I. E. Anderson, D. P. Belanger, C. H. Booth, F. Bridges, J. F. Mitchell, Th. Proffen, H. Zheng. Local Structure of  $La_{1-x}Sr_xCoO_3$ Determined from EXAFS and Neutron Pair Distribution Function Studies// Physical Review Letters. – 2009. – V.102. – article No 026401.

42. S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, M. Motokawa. Evidence for the excited triplet of  $\text{Co}^{3+}$  in LaCoO<sub>3</sub>// Physical Review B. – 2002. – V.66. – article No 094404.

43. M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, Th. Neisius, O. Tjernberg, S. N. Barilo. Low-temperature spin-state transition in LaCoO<sub>3</sub> investigated using resonant x-ray absorption at the Co *K* edge// Physical Review B. – 2006. – V.73. – article N 054424.

44. Hideki Taguchi. Electrical properties and spin state of the  $Co3^+$  ion in  $(Nd_{1-}xGd_x)CoO_3//$  Physica B. -2002. - V.311. - P.298-304.

45. S. Yamaguchi, Y. Okimoto, H. Taniguchi, Y. Tokura. Spin-state transition and high-spin polarons in LaCoO3// Physical Review B. – 1996. – V.53. – P. 2926 – 2929.

46. P. M. Raccah, J. B. Goodenough. First-Order Localized-Electron  $\leftrightarrow$ Collective-Electron Transition in LaCoO<sub>3</sub>// Physical Review. – 1967. – V.155. – P. 932 – 943.

47. G. Thornton, I. W. Owen, G. P. Diakun. The two-band model of the  $LaCoO_3$  semiconductor-metal transition: a spectroscopic evaluation// Journal of Physics: Condensed Matter. – 1991. – V.3. – P. 417.

48. M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov. Intermediate-spin state and properties of  $LaCoO_3//$  Physical Review B. – 1996. – V.54. – P. 5309 – 5316.

49. S. G. Ovchinnikov. Comparison of band structures of the compounds  $La_2CuO_4$ , and  $Nd_2CuO_4$ // Journal of Experimental and Theoretical Physics. – 1992. – V.102. – P.127-131.

50. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, I. A. Nekrasov, Z. V. Pchelkina, V. I. Anisimov. Hybrid LDA and generalized tight-binding method for electronic structure calculations of strongly correlated electron systems// Physical Review. -2005. - B.72. - article N 165104.

51. С.Г. Овчинников, Ю.С. Орлов, И.А. Некрасов, З.В. Пчелкина. Электронная структура, магнитные свойства и механизм перехода диэлектрик – металл в LaCoO<sub>3</sub> с учетом сильных электронных корреляций// Журнал экспериментальной и теоретической физики. – 2011. – Т.139. – С.162 – 174.

 52.
 В.А. Дудников, С.Г. Овчинников, Ю.С. Орлов, Н.В. Казак, К.Р.

 Мичел, Г.С. Патрин, Г.Ю. Юркин. Вклад ионов Co<sup>3+</sup> в высокотемпературные

 магнитные
 и

 электрические
 свойства

 GdCoO<sub>3</sub>//

 Журнал экспериментальной и теоретической физики. – 2012. – Т.141. – С.1-10.

53. Z. Ropka, R. J. Radwanski. <sup>5</sup>D term origin of the excited triplet in LaCoO<sub>3</sub>// Physical Review B. -2003 - V.67 - article N 172401.

54. Yu.S. Orlov, L.A. Solovyov, V.A. Dudnikov, A.S. Fedorov, A.A. Kuzubov, N.V. Kazak, V.N. Voronov, S.N. Vereshchagin, N.N. Shishkina, N.S. Perov, K.V. Lamonova, R.Yu. Babkin, Yu.G. Pashkevich, A.G. Anshits, S.G. Ovchinnikov. Structural properties and high-temperature spin and electronic transitions in GdCoO<sub>3</sub>: Experiment and theory// Physical Review B. – 2013. – V.88. – article№ 235105.

55. H. M. Rietveld. A profile refinement method for nuclear and magnetic structures// Journal of Applied Crystallography. – 1969. –V.2. – P. 65-71.

56. L. A. Solovyov. Full-profile refinement by derivative difference minimization// Journal of Applied Crystallography. – 2004. – V.37. – P. 743-749.

57. K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg. Oxygen content determination in perovskite-type cobaltates// Materials Research Bulletin. – 2005. – V.40. – P.257–263.

58. Supplemental Material at http: //link.aps.org/ supplemental/ 10.1103/PhysRevB.88.235105 for Crystallographic information file for GdCoO<sub>3</sub>.

59. N.B. Ivanova, J. Bartolome, A. Figueroa, J. Blasco, A. Arauzo, M.S. Platunov, V.V. Rudenko, N.V. Kazak. Influence of Ca Substitution on Magnetic and Electric Properties of  $GdCoO_{3-\delta}$  Cobaltite// Solid State Phenomena. – 2011. – V.168-169. – P.501.

60. С.В. Вонсовский. Магнетизм// Наука. М. – 1971. – С.1032.

61. Д. Смарт. Эффективное поле в теории магнетизма// Мир. М. – 1968. – С.271.

 J.D. Cashion, A.H. Cooke, T.L. Thorp, M.R. Wells. Magnetic Properties of Gadolinium Ortho-Aluminate// Proceeding of Royal Society London A. – 1970. – V.318. – P.473-495.

63. Ч. Китель. Введение в физику твердого тела// Наука. – Москва. – 1978.
– С. 792.

64. T. Vogt, J.A. Hriljac, N.C. Hyatt, P. Woodward. Pressure-induced intermediate-to-low spin state transition in  $LaCoO_3//$  Physical Review B. – 2003. – V.67. – article No 140401(1–4)

65. F.G. Birch. Finite Elastic Strain of Cubic Crystals// Physical Review. – 1947. – V.71. – P. 809 – 824.

66. F.G. Birch. Equation of state and thermodynamic parameters of NaCl to
300 kbar in high-temperature domain// Journal of Geophysical Research. – 198. – V.91.
– P. 4949 -4954.

67. И.С. Любутин, А.Г. Гаврилюк. Современные достижения в исследовании фазовых превращений в оксидах 3d-металлов при высоких и сверхвысоких давлениях// Успехи физических наук. – 2009. – Т. 179. – С. 1047 – 1078.

68. B. Scherrer, A. S. Harvey, S. Tanasescu, F. Teodorescu, A. Botea, K. Conder, A. N. Grundy, J. Martynczuk, L. J. Gauckler. Correlation between electrical properties and thermodynamic stability of ACoO3–δ perovskites (A= La, Pr, Nd, Sm, Gd)// Physical Review B. – 2011. – V.84. – article № 085113.

69. И.Б. Берсукер. Электронное строение и свойства координационных соединений, 2-е изд// Химия. – Москва. – 1976.

70. W. A. Baker Jr., H. M. Bobonich. Magnetic Properties of Some High-Spin Complexes of Iron(II)// Inorganic Chemistry. – 1964. – V.3. (8). – P. 1184–1188.

71. D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey,
G. W. Smith, Spin crossover in chromium(II) complexes and the crystal and molecular structure of the high spin form of bis[1,2-bis(diethylphosphino)ethane]diiodochromium(II)// Journal of the Chemical Society, Chemical Communication. – 1989.
– P. 1322 -1323.

72. L. F. Lindoy, S. E. Livingstone. Complexes of iron(II),cobalt(II) and nickel(II) with  $\alpha$ -diimines and related bidentate ligands// Coordination Chemistry Reviews. – 1967. – V.2. – P.173 – 193.

73. Y. Tanabe, S. Sugano. On the absorption spectra of complex ions I// Journal of the Physical Society of Japan. – 1954. – V.9. – P. 753 – 766.

74. Y. Tanabe, S. Sugano. On the absorption spectra of complex ions II// Journal of the Physical Society of Japan. -1954. - V.9. - P.766 - 779.

75. Y. Tanabe, S. Sugano. On the absorption spectra of complex ions III// Journal of the Physical Society of Japan. – 1956. – V.11. – P. 864 – 877.

76. S. G. Ovchinnikov. The mechanism of the electronic transition in ferroborates under high pressure// Journal of Physics: Condensed Matter. -2005. - V.17. - P.743-751.