КАЗАНСКИЙ ПРИВОЛЖСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Федеральное государственное автономное образовательное учреждение высшего профессионального образования

На правах рукописи

Романова Ирина Владимировна

Экспериментальное и теоретическое исследование магнитных свойств монокристаллов тетрафторидов лития-редких земель LiLnF₄ (Ln=Tb, Ho, Dy, Tm)

Диссертация

на соискание ученой степени кандидата физико-математических наук по специальности 01.04.07 – физика конденсированного состояния

Научный руководитель доктор физико-математических наук, профессор Тагиров М.С.

Научный консультант доктор физико-математических наук, профессор Малкин Б.З.

Казань 2014

Содержание

Введение
Глава 1. Магнитные и спектральные свойства монокристаллов LiLnF ₄
(обзор литературы)10
1.1. Экспериментальные исследования 10
1.2. Модели, используемые в анализе экспериментальных
данных
Глава 2. Аппаратура и методика измерений
2.1. Метод выращивания и ориентирования образцов
2.2. Квантовый магнетометр 29
2.3. ЯМР-спектрометр с частотной протяжкой
2.4. Индуктивный метод для исследования
намагниченности кристаллов
Глава 3. Моделирование намагниченности и энергетического спектра
ионов Tm ³⁺ в монокристалле LiTmF ₄ 39
3.1. Эффективный гамильтониан ионов Tm ³⁺ и свободная энергия LiTmF ₄
3.2. Упругие постоянные, намагниченность и вынужденная магнитострикция LiTmF ₄
Глава 4. Намагниченность и локальные магнитные поля
в монокристалле LiTbF ₄ 55
4.1. Кристаллическое поле и структура спектра
ионов Tb ³⁺ в LiTbF ₄ 55
4.2. Продольная намагниченность монокристалла LiTbF ₄ 59

4.3. Намагниченность монокристалла LiTbF ₄ в базисной
плоскости
4.4. Ориентационная зависимость спектра ЯМР ядер ¹⁹ F в
монокристалле LiTbF ₄ при комнатной температуре73
Глава 5. Намагниченность и магнитострикция в монокристалле LiHoF ₄ 78
5.1. Кристаллическое поле в LiHoF ₄ 78
5.2. Магнитострикция в монокристалле LiHoF ₄
5.3. Намагниченность монокристалла LiHoF ₄
5.4. Кривая равновесия фаз монокристалла LiHoF ₄
в поперечном магнитном поле
Глава 6. Магнитные и магнитоупругие свойства монокристалла LiDyF ₄ 92
6.1. Намагниченность монокристалла LiDyF ₄
6.2. Магнитострикция в монокристалле LiDyF ₄ 97
Заключение
Список работ автора диссертации106
Литература111

Введение

Благодаря разнообразию магнитных свойств, двойные фториды редких земель являются объектом интенсивных исследований в течение последних трех десятилетий [1-5]. Тем не менее, изучение магнитных свойств монокристаллов двойных фторидов LiLnF₄ (Ln – редкоземельный ион) остается актуальным для дальнейшего развития теории магнитоупругих эффектов в магнитоконцентрированных веществах, содержащих редкоземельные ионы.

Кристаллы ряда тетрафторидов LiLnF₄ имеют тетрагональную структуру шеелита CaWO₄, пространственная группа симметрии - C_{4h}^{6} (I4₁/a), элементарная ячейка содержит два магнитоэквивалентных иона Ln³⁺ в узлах с точечной группой симметрии S₄ [6].

Кристаллы LiYF₄, имеющие такую же структуру, как и LiLnF₄, активированные ионами Ho³⁺, Er³⁺, Tm³⁺, Dy³⁺, являются хорошими лазерными материалами [7] и используются для преобразования частоты излучения в инфракрасной и видимой областях спектра [8]. Следует отметить, что кристаллы LiY_xDy_{1-x}F₄ являются перспективными материалами для создания импульсных «голубых» и «желтых» лазеров, излучающих на длинах волн 490 и 570 нм, соответственно [9].

Также большой интерес для современных технологий представляют магнитные свойства концентрированных парамагнетиков LiLnF₄. Как было показано в работе [4], кристаллы LiHoF₄ и LiDyF₄ можно использовать в качестве миниатюрных устройств для эффективного фарадеевского вращения плоскости поляризации излучения в видимом, ультрафиолетовом и вакуумном ультрафиолетовом диапазонах спектра (с длинами волн менее 200 нм). Кристаллы с различными редкоземельными ионами обладают качественно различными магнитными структурами при низких температурах. Кристаллы LiTbF₄ и LiHoF₄ являются дипольными изинговскими ферромагнетиками, LiDyF₄ – антиферромагнетик, LiTmF₄ - ван-флековский парамагнетик [1]. Разбавленные кристаллы LiHo_{1-x}Y_xF₄

интенсивно изучаются в настоящее время как модель дипольного спинового стекла [10].

Ранее было обнаружено, что внешние магнитные поля существенно влияют на структуру и упругие свойства кристаллической решетки редкоземельных двойных фторидов [11-14]. Магнитоупругие эффекты проявляются только в достаточно поскольку соответствующие характеристики решетки сильных полях. В парамагнитной фазе определяются разложением по четным степеням магнитного поля. В частности, взаимодействие парамагнитных ионов с деформациями может вносить существенный вклад в нелинейную магнитную решетки восприимчивость кристалла. Детальные исследования нелинейных по магнитному полю эффектов в кристаллах двойных фторидов ранее не проводились. Таким образом. изучение зависимости намагниченности двойных фторидов OT магнитного поля и температуры представляет собой актуальную задачу, решение которой позволит получить важную информацию об электрон - деформационном и электрон – фононном взаимодействиях.

Целью настоящей работы является комплексное исследование магнитных свойств монокристаллов двойных фторидов редких земель методами магнитометрии и ядерного магнитного резонанса и определение параметров моделей, используемых для теоретического описания полученных экспериментальных данных с учетом электрон-деформационного и электронфононного взаимодействий.

Научная новизна исследований заключается в следующем:

- Измерены полевые и температурные зависимости намагниченности при различных ориентациях магнитного поля относительно кристаллографических осей решетки монокристаллов LiDyF₄, LiHoF₄, LiTbF₄.
- Обнаружена сильная анизотропия намагниченности в базисной плоскости монокристаллов LiDyF₄, обусловленная магнитоупругим взаимодействием.

5

- 3. Из анализа полученных данных и выполненных расчетов намагниченности с учетом электрон-деформационного и электронфононного взаимодействий определены параметры кристаллического поля в монокристаллах LiDyF₄, LiHoF₄, LiTbF₄ и параметры электрондеформационного взаимодействия.
- 4. Предложено самосогласованное описание ранее опубликованных в литературе экспериментальных данных: полевых, температурных и угловых зависимостей намагниченности монокристалла LiTmF₄, полевых и угловых зависимостей расщепления спектральной линии, отвечающей дублет-синглетному переходу в оптическом спектре монокристалла LiTmF₄, полевых зависимостей магнитострикции в различных направлениях приложенного магнитного поля в монокристаллах LiDyF₄, LiHoF₄ и LiTmF₄.
- Из анализа полученных угловых зависимостей ЯМР ¹⁹F в монокристалле LiTbF₄ определены значения констант суперсверхтонкого взаимодействия.
- Доказано, что для описания магнитных и магнитоупругих свойств монокристаллов LiLnF₄ необходимо учитывать взаимодействие между редкоземельными ионами через поле фононов.

<u>Практическая ценность работы:</u> Результаты выполненных исследований могут быть применены при изучении магнитных свойств соединений редких земель в парамагнитных и магнитоупорядоченных фазах и при изучении квантовых фазовых переходов.

<u>Апробация работы</u>. Основные результаты работы лично докладывались на различных международных, всероссийских, региональных конференциях, а также на итоговых конференциях Казанского (Приволжского) федерального университета; XXXVI Совещании по физике низких температур, Санкт-Петербург, 2-6 июля 2012; XV Feofilov symposium on spectroscopy of crystals,

Kazan, 16-20 September 2013; International conference Resonances in condenced matter Alt100, Kazan, 21-25 June 2011; X International Youth Scientific School «Actual problems of magnetic resonance and its application», Kazan, 31 October – 3 November 2006; XV International Youth Scientific School «Actual problems of magnetic resonance and its application», Kazan, 22 - 26 October 2012; XVI International Youth Scientific School «Actual problems of magnetic resonance and its application», Kazan, 21 – 25 October 2013.

<u>Публикации.</u> Основное содержание работы отражено в 6 статьях, в том числе в 5 статьях [A-1–A-5] в реферируемых научных журналах, входящих в перечень ВАК, и 18 трудах научных конференций [К-1–К-18].

<u>Личный вклад автора.</u> Представленные в данной диссертации экспериментальные данные были получены в НИЛ МРС и КЭ им. С.А. Альтшулера Института физики Казанского (Приволжского) федерального университета и в Каназавском университете (Япония) в лаборатории сверхнизких температур профессора Х. Сузуки.

Непосредственно автором были проведены эксперименты ПО измерению LiHoF₄, LiTbF₄ на СКВИД-магнетометре намагниченности монокристаллов (Япония), проведены измерения угловых зависимостей намагниченности монокристаллов LiDyF₄, LiHoF₄ индуктивным методом, выполнены измерения зависимостей ЯМР ¹⁹F В монокристалле LiTbF₄. **УГЛОВЫХ** Bce расчеты, представленные диссертации, выполнены научном В автором при консультировании Б.З. Малкина.

Автор защищает:

 Результаты экспериментальных исследований температурных и полевых зависимостей намагниченности в магнитных полях, ориентированных в различных направлениях относительно кристаллографических осей решетки монокристалла LiTbF₄.

- Результаты экспериментальных исследований температурных, полевых и ориентационных зависимостей намагниченности в магнитных полях, ориентированных в различных направлениях относительно кристаллографических осей решетки монокристалла LiHoF₄.
- Результаты экспериментальных исследований температурных, полевых и ориентационных зависимостей намагниченности в магнитных полях, ориентированных в различных направлениях относительно кристаллографических осей решетки монокристалла LiDyF₄.
- 4. Результаты теоретического анализа экспериментальных данных: величины параметров кристаллического поля в монокристаллах LiDyF₄, LiHoF₄, LiTmF₄, LiTbF₄.
- Результаты теоретического анализа экспериментальных данных: совокупности параметров электрон-деформационного взаимодействия в монокристаллах LiDyF₄, LiHoF₄, LiTmF₄, LiTbF₄, значения констант суперсверхтонкого взаимодействия.

Структура и объем работы:

Диссертация состоит из введения, 6 глав и заключения, изложена на 121 страницах машинописного текста, содержит 37 рисунков и 22 таблицы. Список используемой литературы содержит 96 наименований.

В **первой главе** приведен обзор работ по исследованию спектральных, магнитных и магнитоупругих свойств монокристаллов двойных фторидов редких земель в парамагнитной и магнитоупорядоченной фазах, и теоретических моделей, использованных при интерпретации экспериментальных данных.

Во второй главе описаны методика подготовки образцов к проведению измерений и основная использованная аппаратура (СКВИД-магнетометр, индуктивный метод и ЯМР спектрометр).

В **третьей главе** приведены результаты расчетов температурных и полевых зависимостей намагниченности, вынужденной магнитострикции и энергетического спектра монокристалов LiTmF₄.

В **четвертой главе** приведены результаты измерений и расчетов температурных и полевых зависимостей намагниченности, магнитострикции, восприимчивости и результаты ЯМР исследований в монокристалле LiTbF₄.

В пятой главе приведены результаты измерений и расчетов температурных и полевых зависимостей намагниченности, магнитострикции и кривой равновесия фаз монокристалла LiHoF₄.

В **шестой главе** приведены результаты измерений и расчетов температурных и полевых зависимостей намагниченности и магнитострикции монокристалла LiDyF₄.

В заключении приводятся основные результаты работы.

Глава 1. Магнитные и спектральные свойства монокристаллов LiLnF₄ (обзор литературы)

1.1. Экспериментальные исследования

Кристаллы двойных фторидов лития-редких земель изучались с использованием различных методов физического эксперимента, включая методы измерений при низких и сверхнизких температурах, в сильных стационарных и импульсных магнитных полях и при высоких давлениях.

Кристаллическая решетка кристаллов LiLnF₄ содержит 12 тетрагональных объемно-центрированных подрешеток Браве с векторами трансляции $a_1 = (a/2 \ a/2 \ -c/2), \ a_2 = (a/2 \ -a/2 \ c/2), \ a_3 = (-a/2 \ a/2 \ c/2).$

Элементарная ячейка содержит два Ln^{3+} иона с координатами (0 0 *c*/2) и (0 *a*/2 3*c*/4), два иона Li^+ с координатами (0 0 0) и (0 *a*/2 *c*/4), и восемь ионов фтора F с координатами $\mathbf{r}_1 = (ya \ (1/2-x)a \ (1/4+z)c), \mathbf{r}_2 = (-ya \ (1/2+x)a \ (1/4+z)c), \mathbf{r}_3 = (xa \ (1/2+y)a \ (1/4-z)c), \mathbf{r}_4 = (-xa \ (1/2-y)a \ (1/4-z)c), \mathbf{r}_5 = (-ya \ xa \ -zc), \mathbf{r}_6 = (ya \ -xa \ -zc), \mathbf{r}_7 = (-xa \ -ya \ zc), \mathbf{r}_8 = (xa \ ya \ zc).$

Структурные параметры кристаллических решеток LiLnF₄ были определены из рентгеноструктурных исследований [6] и измерений рассеяния нейтронов [15] (см. таблицу 1).

Кристалл	<i>a</i> , Å	<i>c</i> , Å	x	у	Z	ρ, г/см ³
LiTbF ₄	5.192	10.875	0.2801	0.1607	0.0813	5.46
LiDyF ₄	5.19	10.83				5.59
LiHoF ₄	5.18	10.75				5.70
LiYF ₄	5.164	10.741	0.2817	0.1645	0.0813	3.99
LiTmF ₄	5.14	10.62				5.95

Таблица 1. Параметры решеток и плотности кристаллов LiLnF₄ [6, 15]

Структура кристаллической решетки монокристаллов LiLnF₄ показана на рисунке 1.

Рисунок 1. Кристаллическая структура двойных тетрафторидов LiLnF₄.

В кристаллографической системе координат оператор, отвечающий энергии взаимодействия локализованных на редкоземельных ионах 4f-электронов с кристаллическим полем симметрии S_4 определяется семью независимыми параметрами кристаллического поля $B_p^{\ k}$:

$$H_{cf} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^4 O_4^4 + B_4^{-4} \Omega_4^4 + B_6^0 O_6^0 + B_6^4 O_6^4 + B_6^{-4} \Omega_6^4,$$
(1)

здесь $O_p^{\ k}$ и $\Omega_p^{\ k}$ – линейные комбинации сферических тензорных операторов, которые совпадают с соответствующими операторами Стивенса [16] при рассмотрении матрицы оператора (1) в пространстве собственных функций оператора полного момента количества движения.

Собственные функции оператора (1) преобразуются по неприводимым представлениям точечной группы S₄. В случае четного числа 4f-электронов энергетический спектр может содержать синглеты Γ_1 , Γ_2 и дублеты Γ_{34} , в случае нечетного числа 4f-электронов – только дублеты, отвечающие двузначным представлениям Γ_{56} и Γ_{78} .

Штарковская структура спектров ионов Tb³⁺, Ho³⁺ Tm³⁺ в концентрированных парамагнетиках LiTbF₄, LiHoF₄, LiTmF₄ была определена Кристенсеном из анализа поляризованных спектров поглощения в диапазоне волновых чисел 4000-26000 см⁻¹ [17-19]. Дополнительная информация об энергии ряда состояний была получена из спектров электронного комбинационного рассеяния [20, 21]. Энергии нижних подуровней основных мультиплетов приведены в таблице 2. Следует отметить, что собственные значения оператора (1) инвариантны относительно вращений системы координат. В частности, структура этого оператора не изменяется при поворотах системы координат вокруг оси z, совпадающей с кристаллографической осью c, но соответствующим выбором угла поворота

LiTbF ₄	Dy:LiYF ₄	LiHoF ₄	LiTmF ₄
$^{7}F_{6}[17]$	⁶ H _{15/2} [22]	⁵ I ₈ [18] [23] [21]	${}^{3}\text{H}_{6}[19]$ [21]
$\Gamma_2 = 0$	Γ_{78} 0	$\Gamma_{34} \ 0 \ 0 \ 0$	Γ_2 0 -
$\Gamma_2 = 0$	Γ ₅₆ 14.2	Γ_2 8 7.4 -	Γ ₃₄ 31 -
$\Gamma_{34} 107$	Γ ₅₆ 41.1	Γ ₂ 26 23.3 -	Γ_1 56 68
Γ_1 124	Γ ₅₆ 61.9	Γ_{1} 49 47.3 -	Γ_2 282 278
Γ_2 136	Γ ₇₈ 70.2	Γ_1 61 - 58	Γ_2 319 319
Г ₃₄ 166	Γ ₇₈ 110.4	Γ_{34} 78 72.1 71	Γ_1 363 364
Γ_1 217	Γ ₇₈ 344	Γ ₁	Γ ₃₄
	Γ ₅₆ 375	Γ ₁	Γ ₃₄
		Γ ₃₄ 283	
		Γ_2	
		Γ ₃₄ 314	

Таблица 2. Энергия (см⁻¹) и свойства симметрии штарковских подуровней основного мультиплета редкоземельных ионов в кристаллах LiLnF₄.

Таким образом, из сопоставления вычисляемых собственных значений оператора Гамильтона редкоземельного иона в кристаллическом поле с измеренными энергиями штарковских подуровней можно найти величины лишь шести параметров кристаллического поля (см. таблицу 3).

В литературе отсутствуют данные по штарковской структуре спектра ионов Dy^{3+} в кристалле LiDyF₄, однако в работе [22] была определена штарковская структура и найдены параметры кристаллического поля ионов Dy^{3+} в кристалле LiYF₄ (см. таблицы 2 и 3). Поскольку существенных различий между спектральными характеристиками концентрированных парамагнетиков LiLnF₄ и активированных кристаллов LiYF₄:Ln³⁺ (Ln=Tb, Ho, Tm) нет [1, 24, 25], можно предположить, что спектры кристаллов LiDyF₄ и LiYF₄:Dy также отличаются лишь незначительными сдвигами уровней энергии (не более 10 см⁻¹).

p k	LiTbF ₄	Dy:LiYF ₄	LiHoF ₄	LiTmF ₄
1	[17] [26]	[22]	[18] [27] [26] [28,29]	[19]
2 0	237 242	165	190 235 267 216.1	183
4 0	-54 -56	-88	-78 -103 -116 -84.1	-89.5
4 4	1130 1210	980	869 1098 1135 866	960
60	4 5.4	-4.4	-3.2 -0.6 -0.6 -2.5	-4
64	522 654	427	427 533 537 433	431
6 -4	201 223	65	- 105 74 61	83

Таблица 3. Параметры кристаллического поля B_n^k (см⁻¹) в кристаллах LiLnF₄.

Чтобы найти параметры кристаллического поля, соответствующие заданной системе координат, в частности, кристаллографической, нужна дополнительная информация о структуре волновых функций штарковских подуровней, которую можно получить при использовании направленных воздействий на изучаемый кристалл, например, из измерений намагниченности (нелинейной магнитной восприимчивости) в достаточно сильном магнитном поле. Анизотропия нелинейной поперечной магнитной восприимчивости во внешнем магнитном поле, перпендикулярном оси симметрии кристаллов LiLnF₄ (Ln=Tb, Dy, Ho, Er, Yb), была измерена при температурах 1.7 К и 4.2 К в работе [30], однако при

варьировании параметров кристаллического поля было достигнуто лишь качественное описание данных измерений.

Результаты измерений оптических спектров были уточнены по данным измерений высокочастотных (70 – 600 ГГц) спектров ЭПР в магнитных полях до 6 Т при температурах 1.4 – 25 К и субмиллиметровых спектров поглощения кристаллов LiTbF₄ и LiHoF₄ [31-33]. Измеренные величины g-факторов, разность энергий двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов тербия и энергии двух нижних синглетов в спектре ионов гольмия приведены ниже в таблице 4.

Итак, как следует из таблицы 2, основное состояние ионов Tm^{3+} - синглет, ближайший дублет имеет энергию (46 К), существенно превышающую типичную для редкоземельных соединений энергию магнитных (диполь-дипольных и обменных) взаимодействий, и кристалл LiTmF₄ является ван-флековским парамагнетиком. Основные состояния ионов Dy³⁺ и Ho³⁺ - дублеты, разность энергий двух нижних синглетов иона Tb³⁺ не превышает 2 К, и следовало ожидать появления магнитоупорядоченных фаз в кристаллах LiDyF₄, LiHoF₄ и LiTbF₄ при низких температурах.

Впервые переходы в ферромагнитное состояние кристаллов LiTbF₄ и LiHoF₄ с осью легкого намагничивания, совпадающей с направлением кристаллографической оси с, были обнаружены в работах [34] и [27, 35], температурных зависимостей соответственно, ИЗ продольной магнитной восприимчивости. При температурах, меньших температуры Кюри T_{C} от температуры, восприимчивость не зависит продольная а величина восприимчивости $\chi = 1/N_s$ определяется фактором размагничивания образца N_s $(N_s=4\pi/3$ для сферического образца). Такое поведение восприимчивости является особенностью характерной дипольных ферромагнетиков, которые В магнитоупорядоченном разбиваются состоянии цилиндрические на (иглообразные) домены (или слои) с нулевым фактором размагничивания вдоль направления спонтанной намагниченности. Внешнее магнитное поле лишь переориентирует домены (при этом внутреннее поле образца компенсирует внешнее поле), но не изменяет их намагниченность.

Кристалл	Симметрия	Температура	Ближайшие	
	основного	магнитного	возбужденные	
	состояния иона	фазового	состояния	
	Ln ³⁺ , g-факторы	перехода		
LiTbF ₄	Квазидублет Г ₂ ,	Т _С =2.89 К	Γ ₃₄ ,	
$(4f^8)$	Γ_2 , начальное		108 см ⁻¹	
	расщепление			
	∆≈1 см ⁻¹			
	$g_{\parallel}=17.85\pm0.10,$			
	g⊥≈0			
$LiHoF_4(4f^{10})$	Некрамерсов	Т _С =1.53 К	$\Gamma_2, 7.3 \text{ cm}^{-1}$	
	дублет Г ₃₄ ,		Г₂, 23.1 см⁻¹	
	$g_{\parallel}=14.1\pm0.2,$			
	g⊥≈0			
$LiDyF_4$ (4f ⁹)	Дублет Г ₅₆ ,	Т _N =0.62 К	$\Gamma_{56}, 14.2 \text{ cm}^{-1},$	
	$g_{\parallel}=1.1\pm0.07,$		$\Gamma_{56}, 41 \text{ cm}^{-1}$	
	$g_{\perp}=9.2\pm0.002$			
$LiTmF_4$ (4f ¹²)	Синглет Г ₂ ,	-	Г _{34,} 31.9см ⁻¹	
	$g_{\parallel}\!\!=\!\!0,g_{\perp}\!\!=\!\!0$		Г _{1,} 62.4см ⁻¹	

Таблица 4. Магнитные характеристики кристаллов LiLnF₄

Температурная зависимость спонтанной намагниченности кристалла LiTbF₄, полученная из измерений магнитного рассеяния нейтронов в работе [15], описывается выражением $M(T) \sim (1 - T/T_C)^{\beta}$, где критический показатель $\beta = 0.45 \pm 0.03$ близок к величине 0.5, соответствующей упорядочиванию, обусловленному диполь-дипольными взаимодействиями.

Доминирующая роль дальнодействующих магнитных взаимодействий между редкоземельными ионами формировании магнитоупорядоченных фаз В кристаллов LiTbF₄ и LiHoF₄ была подтверждена прецизионными измерениями намагниченности и восприимчивости в критической области температур вблизи соответствующей температуры перехода в работах [36-43]. Найденные величины критических показателей, определяющих зависимости теплоемкости, восприимчивости и спонтанной намагниченности от температуры, оказались близкими к значениям, предсказанным для систем с диполь-дипольными взаимодействиями.

Взаимодействия, отличные от диполь-дипольных, представляют существенный интерес для моделирования магнитных свойств кристаллов. В рамках приближения самосогласованного поля локальное магнитное поле, действующее на ионы в подрешетке *s*, в случае сферического образца можно представить в виде

$$\boldsymbol{B}_{loc}(s) = \boldsymbol{B} + \sum_{s'} [\boldsymbol{Q}(s,s') + \boldsymbol{L}(s,s') - \frac{1}{v} N_s] \boldsymbol{m}(s'), \qquad (2)$$

где **B** – внешнее магнитное поле, v – объем элементарной ячейки, m(s) - магнитный момент иона в s-ой подрешетке, тензоры Q(s,s') и L(s,s') определяют энергии диполь-дипольных и обменных взаимодействий. Энергии обменного взаимодействия двух ближайших ионов с операторами магнитных моментов m_1 и m_2 в настоящей работе мы сопоставляем оператор $H_{exch} = -\sum_{\alpha=x,y,z} K_{\alpha}m_{1\alpha}m_{2\alpha}$. В случае низких температур ($k_BT \ll \Delta$, k_B – постоянная Больцмана, Δ - энергия первого возбужденного штарковского подуровня) можно учитывать лишь

основные состояния ионов, которым сопоставим эффективный спин *S* (*S*=1/2 в случае двукратного вырождения). Операторы компонент магнитного момента иона в основном состоянии представим в виде $m_{\alpha} = -g_{\alpha\alpha}\mu_{B}S_{\alpha}$, где μ_{B} – магнетон Бора. Энергия обменного взаимодействия принимает обычно используемый вид $H_{exch} = -\sum_{\alpha=x,y,z} J_{\alpha}^{(exch)} S_{1\alpha}S_{2\alpha}$, где обменные интегралы равны $J_{\alpha}^{(exch)} = (g_{\alpha\alpha}\mu_{B})^{2}K_{\alpha}$.

Соответствующий вклад в локальное магнитное поле определяется тензором $L_{\alpha\beta}(s,s') = z_{ss'}J_{\alpha}^{(exch)}(g_{\alpha\alpha}\mu_B)^{-2}\delta_{\alpha\beta}$, где $z_{ss'}$ - число ионов в подрешетке s', ближайших к иону в подрешетке s. Параметры обменного взаимодействия между ионами тербия в кристалле LiTbF₄ были оценены в работе [44] из данных по неупругому нейтронов: $J_z^{(exch)} = -0.52 \pm 0.18$ К. Из анализа температурной рассеянию зависимости магнитной восприимчивости кристалла LiTbF₄ в работе [26] был определен вклад обменного взаимодействия в локальное магнитное поле, соответствующая величина обменного интеграла $J_{z}^{(exch)}$ равна 0.56 К (возможно, что отсутствие минус является типографской ошибкой). знака

Антиферромагнитный характер обменного взаимодействия между ионами тербия был подтвержден в работах [45, 46], в которых были измерены и проанализированы температурные зависимости теплоемкости кристаллов LiLnF₄ (Ln=Er, Dy, Ho, Tb) в области низких температур, включающей температуру магнитного фазового перехода.

Обусловленные обменным взаимодействием вклады в локальные магнитные поля, действующие на ионы Ho^{3+} в LiHoF₄, были определены по данным измерений продольной магнитной восприимчивости в работе [26], соответствующая величина обменного интеграла, совпадающая с оценкой из анализа теплоемкости в работе [46], равна $J_z^{(exch)} = -0.686 \pm 0.1$ К.

Несколько большая величина обменного интеграла (-0.9 \pm 0.35 K) была получена в работе [23] из измерений расщеплений основного дублета ионов гольмия, регистрируемых по расщеплению спектральной линии перехода на синглет в мультиплете ⁵F₃ в спектре оптического поглощения. Сравнимый по величине, но с противоположным знаком обменный вклад в локальное поле был получен из измерений поперечной восприимчивости, что свидетельствует о существенном смешивании волновых функций основного дублета ионов гольмия с волновыми функциями возбужденных синглетов во внешнем магнитном поле, перпендикулярном оси симметрии кристалла.

Следует заметить, что температура фазового перехода T_C =1.53К воспроизводится в расчетах термодинамических свойств LiHoF₄ по методу Монте-Карло при использовании обменного интеграла $J_z^{(exch)} = -0.48$ К [47].

Информация о локальных магнитных полях, индуцируемых внешним полем при комнатной температуре на ядрах ¹⁹F и ⁷Li в кристаллах LiTbF₄, LiHoF₄, LiErF₄ и LiDyF₄, была получена в работе [3] из измерений угловых зависимостей спектров ЯМР. Были выделены вклады в локальные поля от диполь-дипольного и суперсверхтонкого взаимодействий и определены константы суперсверхтонкого взаимодействия. Обратим внимание на различие параметров кристаллического поля в кристаллах LiTbF₄ и LiHoF₄, приведенных в работах [26] и [17, 18] (см. таблицу 3). Одной из причин различия параметров кристаллического поля, найденных из данных оптических и магнитных исследований (из прямого сравнения вычисленных энергий редкоземельного иона в кристаллическом поле с частотами оптических переходов либо из расчетов линейной магнитной восприимчивости), является то обстоятельство, что обычно при анализе магнитных свойств рассматривается лишь основной мультиплет, т.е., не учитывается смешивание волновых функций мультиплетов с одинаковыми значениями полного момента спин-орбитальным взаимодействием и смешивание мультиплетов в кристаллическом поле.

Рисунок 2. Фазовая диаграмма LiHoF₄ [48]. В LiHoF₄ наблюдается как классический температурный фазовый переход в ферромагнитное состояние ($H_t=0, T=T_C$) так и квантовый фазовый переход ($H_t=H_c, T\rightarrow 0$). Пунктирная и сплошная кривые получены в приближении самосогласованного поля без учета и с учетом сверхтонкого взаимодействия (¹⁶⁵Ho, I=7/2, распространенность 100%), соответственно.

В течение последних 15 лет в литературе обсуждается механизм разрушения дальнего магнитного порядка в кристалле LiHoF₄ в магнитном поле H_t, перпендикулярном оси легкого намагничивания, совпадающей с осью симметрии решетки. При абсолютном нуле температуры переориентация намагниченности соответствует квантовому фазовому переходу. Измеренная ферромагнитной и парамагнитной кривая равновесия между фазами. определяющая зависимость критического магнитного поля от температуры, представлена на рисунке 2 (из работы [48]). Отметим, что до настоящего времени вычисленные в различных работах фазовые диаграммы LiHoF₄ существенно отличаются от измеренной, причем результаты вычислений критически зависят от используемых параметров кристаллического поля [28, 29, 49].

В работе [29] энергия обменного взаимодействия была представлена оператором $H_{exch} = -jJ_1J_2$ с параметром $j = -1.16 \cdot 10^{-3}$ К, где J_i – операторы полного углового момента ионов; из анализа измеренных по данным неупругого рассеяния нейтронов энергий возбуждений получена оценка параметра квадрупольного взаимодействия между ионами, соответствующий оператор представлен в виде

$$H_{O} = -B_{21}[O_{2}^{1}(i)O_{2}^{1}(k) + \Omega_{2}^{1}(i)\Omega_{2}^{1}(k)], \qquad (3)$$

где $B_{21}=0.64$ К и $O_p^k(i)$, $\Omega_p^k(i)$ -операторы Стивенса, действующие в пространстве состояний *i*-го иона.

В работе [49] из сопоставления вычисленной фазовой диаграммы с измеренной в области малых величин критического поперечного поля были получены величины постоянных изотропного обменного взаимодействия $j = -3.91 \cdot 10^{-3}$ К и - $4.38 \cdot 10^{-3}$ К при использовании параметров кристалличекого поля, приведенных в работах [29] и [50], соответственно.

Магнитные свойства кристалла LiDyF₄ до настоящего времени были изучены существенно менее детально, чем свойства двойных фторидов тербия и гольмия. Температура перехода в антиферромагнитную фазу, T_N =0.61K, с противоположными направлениями магнитных моментов двух подрешеток ионов

трехвалентного диспрозия, перпендикулярных оси симметрии кристалла, была найдена В работе [45] ИЗ температурной зависимости теплоемкости. LiDyF₄ Намагниченность кристалла в импульсных магнитных полях С напряженностью до 28 Т была измерена в работе [51].

Большой цикл работ, проведенных в Казанском государственом университете под руководством чл.-корр. АН СССР С.А. Альтшулера, был посвящен изучению магнитоупругих взаимодействий в кристаллах LiLnF₄ [52]. Была обнаружена гигантская магнитострикция в ванфлековском парамагнетике LiTmF₄ [11], измерены температурные и магнитополевые зависимости и анизотропия магнитострикции в кристаллах LiErF₄ [12] и LiTbF₄ [53], исследованы температурные и магнитополевые зависимости упругих постоянных в кристаллах LiTmF₄, LiTbF₄, LiDyF₄, LiHoF₄, LiErF₄ [14], обнаружено аномальное смягчение кристаллических решеток при низких температурах. На примере монокристаллов LiHoF₄ и LiTbF₄ было показано, что в ферромагнитной фазе для описания магнитоупругих эффектов наряду с одноионным необходимо учитывать и двухчастичное электрон-деформационное взаимодействие [54]. Измеренные изменения скоростей звука в антиферромагнитной фазе кристаллов LiDyF₄ и LiErF₄ (*T*_N=0.38 K [55]) интерпретированы как результат модуляции обменных взаимодействий деформациями решетки.

Полученная из исследований магнитоупругих эффектов информация о параметрах электрон-деформационного взаимодействия была дополнена результатами пьезоспектроскопических экспериментов, измерены расщепления линий, отвечающих синглет-дублетным переходам в оптических спектрах кристаллов LiTmF₄ [56] и LiHoF₄ [57]. Позднее экспериментально и теоретически было исследовано влияние редкоземельных ионов на тепловое расширение кристаллов LiLnF₄ [13, 58]. Из сопоставления относительных изменений постоянных решетки *а* и *с* при изменении температуры в парамагнитных кристаллах и в диамагнитном кристалле LiLuF₄ получена информация о параметрах связи редкоземельных ионов с полносимметричными деформациями решетки, подчеркнута необходимость учета всех ненулевых мультипольных

моментов (2-го, 4-го и 6-го порядка) электронной 4f-оболочки при теоретическом рассмотрении магнитоупругой связи.

Температурные, полевые и угловые зависимости намагниченности монокристалла LiTmF₄ в разных магнитных полях и при разных температурах были измерены на квантовом СКВИД-магнетометре [59, 60], дополнительная информация была получена из данных измерений ЯМР ¹⁶⁹Tm, было получено качественное согласие экспериментальных данных и расчетов, в которых не учитывались магнитоупругое и электрон-фононное взаимодействия.

Информация о параметрах взаимодействия редкоземельных ионов со смещениями подрешеток различной симметрии была получена из исследований температурных и магнитополевых зависимостей спектров комбинационного рассеяния и инфракрасного решеточного поглощения кристаллов LiTmF₄ [20], LiTbF₄ [61 - 63] и LiYbF₄ [64, 65]. В магнитоупорядоченной фазе кристаллов LiTbF₄ было обнаружено спонтанное расщепление вырожденных оптических ветвей колебательного спектра, обусловленное образованием связанных электрон-фононных возбуждений.

1.2. Модели, используемые в анализе экспериментальных данных

Найденные из различных экспериментальных исследований магнитные структуры в магнитоупорядоченных фазах кристаллов LiLnF₄ согласуются с результатами вычислений энергии основного состояния этих кристаллов в случае диполь-дипольного взаимодействия между ионами Ln³⁺ [66].

Спектральные характеристики редкоземельных двойных фторидов И результаты экспериментальных исследований магнитострикции, магнитополевых эффектов в спектрах комбинационного рассеяния на смешанных электронфононных возбуждениях были интерпретированы В рамках теории магнитоупругих взаимодействий в ионных редкоземельных парамагнетиках, разработанной Б.З. Малкиным [67]. С использованием постоянных магнитоупругой связи, вычисленных в модели обменных зарядов. Ниже кратко описана методика выполненных ранее расчетов.

21

Рассмотрим однородно деформированный ионный кристалл LiLnF₄ во внешнем магнитном поле **B** (направление **B** относительно кристаллографических осей определяется сферическими координатами θ (угол между **B** и осью *c*) и φ (угол между проекцией **B** на плоскость *ab* и осью [100])). Координаты ионов определяются соотношениями

$$x_{\alpha}(L,s) = (\delta_{\alpha\beta} + e_{\alpha\beta})X_{\beta}(L,s) + w_{\alpha}(s), \qquad (4)$$

здесь $\alpha, \beta = x, y, z$; по повторяющимся координатным индексам подразумевается суммирование, L – номер ячейки, s – номер подрешетки, $X_{\alpha}(L,s)$ – равновесные координаты ионов в недеформированной решетке, $\delta_{\alpha\beta}$ - символ Кронекера, $e_{\alpha\beta}$ - компоненты тензора деформации e, w(s) – вектор смещения s – ой подрешетки.

Гамильтониан редкоземельного иона из *s*-ой подрешетки представим в виде (пренебрегаем ядерной зеемановской энергией и сверхтонким взаимодействием):

$$H(s) = H_0 + H_{cf} + \sum_{\alpha\beta} V_{\alpha\beta} e_{\alpha\beta} + \sum_{\alpha,s'} V_{\alpha}'(s') w_{\alpha}(s') + \sum_{j} \mu_B B_{loc}(s) (l_j + 2s_j).$$
(5)

Первое слагаемое в (5) - гамильтониан свободного иона, второе слагаемое – энергия иона в кристаллическом поле (см. выражение (1)). Третье и четвертое слагаемые определяют линейное взаимодействие редкоземельного иона с однородными макро- и микродеформациями, соответственно. Электронные операторы $V'_{\alpha\beta}$ и $V''_{\alpha}(s)$ могут быть представлены, также как энергия иона в кристаллическом поле, линейными комбинациями сферических тензорных операторов с параметрами, которые можно вычислить в рамках модели обменных зарядов [67]. Ниже электрон-деформационное взаимодействие рассматривается как возмущение. Последнее слагаемое в (5) – электронная зеемановская энергия; здесь μ_B - магнетон Бора, l и s - электронные орбитальный и спиновый моменты, соответственно, суммирование распространяется на 4f-электроны, B_{loc} - локальное магнитное поле, определенное выражением (2).

Свободную энергию кристалла (на элементарную ячейку с объемом *v*) запишем в виде:

$$F = \frac{v}{2} [eC'e + 2\sum_{s} eb(s)w(s) + \sum_{s,s'} w(s)a(s,s')w(s')] -\frac{1}{2}\sum_{ss'=1}^{n} m(s)[Q(s,s') + L(s,s')]m(s') - \sum_{s} k_{B}T \ln Tr \exp(-H(s)/k_{B}T),$$
(6)

где *а* - динамическая матрица решетки в центре зоны Бриллюэна, тензор *b* определяет взаимодействие между макро- и микро-деформациями. В нулевом приближении по электрон-деформационному взаимодействию тензор упругих постоянных решетки равен

$$\boldsymbol{C} = \boldsymbol{C}' - \sum_{ss'} \boldsymbol{b}(s) \boldsymbol{a}^{-1}(s,s') \boldsymbol{b}(s') / \boldsymbol{v} \,. \tag{7}$$

Из условий равновесия

$$\partial F / \partial e_{\alpha\beta} = \partial F / \partial w_{\alpha}(s) = \partial F / \partial m_{\alpha}(s) = 0$$
(8)

получаем систему самосогласованных уравнений относительно компонент магнитных моментов ионов, тензора деформации и смещений подрешеток.

В линейном приближении по электрон-деформационному взаимодействию макродеформации решетки и смещения подрешеток, индуцированные внешним магнитным полем, равны

$$\boldsymbol{e}(\boldsymbol{B}) = -\frac{n}{v} \boldsymbol{S}[\langle \boldsymbol{V} \rangle_{B} - \langle \boldsymbol{V} \rangle_{0}], \qquad (9)$$

$$\boldsymbol{w}(s,\boldsymbol{B}) = -\sum_{s'} \boldsymbol{a}^{-1}(s,s') [\boldsymbol{b}(s')\boldsymbol{e}(\boldsymbol{B}) + \frac{n}{v} (\langle \boldsymbol{V}''(s') \rangle_{B} - \langle \boldsymbol{V}''(s') \rangle_{0})], \qquad (10)$$

где $S = C^{-1}$ - тензор упругих податливостей решетки, n - число редкоземельных ионов в ячейке, угловые скобки <...>_B и <...>₀ определяют термодинамические средние значения по собственным состояниям гамильтониана (5) для $B \neq 0$ и B=0, соответственно. Операторы $V = V' - \sum_{ss'=1}^{n} b(s)a^{-1}(s,s')V''(s')$ в (9) равны операторам

V′, перенормированным вследствие взаимодействия макро- и микродеформаций.

Подставив выражения (9) и (10) для e и w(s), соответственно, в оператор (5), мы получаем эффективный одноионный гамильтониан $H_{eff}(B, \{m(s)\})$, параметрически зависящий от магнитных моментов ионов. Непосредственные расчеты средних значений магнитных моментов

 $m(s) = Tr[\mu(s)\exp(-H_{eff}(B, \{m(s')\})/k_BT)]/Tr[\exp(-H_{eff}(B, \{m(s')\})/k_BT)]$ (11) дают систему самосогласованных уравнений, определяющих зависимость моментов от внешнего магнитного поля. Изменения упругих постоянных в зависимости от магнитного поля и температуры можно вычислить, используя формулу Ван-Флека для магнитной восприимчивости, в которой матричные элементы оператора магнитного момента заменяются на матричные элементы операторов V в базисе из собственных функций гамильтониана H_{eff} .

Расчеты существенно упрощаются при учете свойств симметрии системы. Введем линейные комбинации компонент тензора деформации $e(A_g^1) = e_{zz}$, $e(A_g^2) = (e_{xx} + e_{yy})/2, \quad e(B_g^1) = e_{xx} - e_{yy}, \quad e(B_g^2) = e_{xy}, \quad e_1(E_g) = e_{xz}, \quad e_2(E_g) = e_{yz},$ преобразующиеся по неприводимым представлениям $\Gamma = A_g$, B_g , E_g фактор-группы симметрии решетки C_{4h}. В частности, магнитное поле **B**, направленное вдоль кристаллической оси *с*, индуцирует только полносимметричные *A*_g деформации, а поле, направленное в плоскости *ab*, индуцирует полносимметричные и ромбические (В₂) деформации. Соответствующие микроскопические деформации A_g и B_g симметрии $w_k(\Gamma)$ определяются 3 и 5 независимыми линейными подрешеток, соответственно комбинациями смещений [12]. В базисе оператор деформаций электрон-деформационного симметризованных взаимодействия имеет вид:

$$H_{e-def} = \sum_{\Gamma\lambda} \left[\sum_{k} V_k(\Gamma^{\lambda}) e_k(\Gamma^{\lambda}) + \sum_{p} V_p^{"}(\Gamma^{\lambda}) \Delta w_p(\Gamma^{\lambda})\right],$$
(12)

где $e_k(\Gamma^{\lambda})$ и $\Delta w_p(\Gamma^{\lambda})$ - независимые переменные. В случае взаимодействия с A_g и B_g деформациями, электронные операторы можно записать в виде

$$V(A_g^{\lambda}) = a_{\lambda,2}^0 O_2^0 + a_{\lambda,4}^0 O_4^0 + a_{\lambda,4}^4 O_4^4 + a_{\lambda,4}^{-4} \Omega_4^4 + a_{\lambda,6}^0 O_6^0 + a_{\lambda,6}^4 O_6^4 + a_{\lambda,6}^{-4} \Omega_6^4, \quad (13)$$

$$V(B_g^{\lambda}) = b_{\lambda,2}^2 O_2^2 + b_{\lambda,2}^{-2} \Omega_2^2 + b_{\lambda,4}^2 O_4^2 + b_{\lambda,2}^{-2} \Omega_4^2 + b_{\lambda,6}^2 O_6^2 + b_{\lambda,6}^{-2} \Omega_6^2 + b_{\lambda,6}^6 O_6^6 + b_{\lambda,6}^{-6} \Omega_6^6.$$
(14)

В таблице 5 приведены параметры связи $a_{\lambda,k}^p$ и $b_{\lambda,k}^p$, полученные из данных пьезоспектроскопических измерений в кристаллах LiYF₄, активированных ионами Er³⁺ и Tm³⁺ [25], при использовании упругих постоянных из работы [68] (см. таблицу 6).

В таблице 6 приведены величины симметризованных компонент тензора упругих податливостей, полученные из имеющихся в литературе данных измерений упругих постоянных кристаллов двойных фторидов:

$$\begin{split} S(A_{\rm g}11) &= (C_{11}+C_{12})/\Delta(A_{\rm g}); \quad S(A_{\rm g}12) = -C_{13}/\Delta(A_{\rm g}); \quad S(A_{\rm g}22) = C_{33}/2\Delta(A_{\rm g}); \\ S(B_{\rm g}11) &= 2C_{66}/\Delta(B_{\rm g}); \quad S(B_{\rm g}12) = -C_{16}/\Delta(B_{\rm g}); \quad S(B_{\rm g}22) = (C_{11}-C_{12})/4\Delta(B_{\rm g}); \\ S(E_{\rm g}) &= 1/4C_{44}, \end{split}$$

где

$$\Delta(A_g) = (C_{11} + C_{12})C_{33} - 2C_{13}^{2};$$

$$\Delta(B_g) = (C_{11} - C_{12})C_{66} - 2C_{16}^{2}.$$

Таблица 5. Константы электрон-деформационного взаимодействия (в см⁻¹).

	$a_{\lambda,2}{}^0$	$a_{\lambda,4}{}^0$	$a_{\lambda,4}{}^4$	$a_{\lambda,4}^{-4}$	$a_{\lambda,6}{}^0$	$a_{\lambda,6}^{4}$	$a_{\lambda,6}^{-4}$	
A_{g}^{-1}	350	140	2300	1550	90	700	300	
$A_{ m g}^{2}$	-900	500	2400	795	-50	1300	1100	
	${b_{\lambda,2}}^2$	$b_{\lambda,2}^{-2}$	${b_{\lambda,4}}^2$	$b_{\lambda,4}$ -2	$b_{\lambda,6}{}^2$	$b_{\lambda,6}$ -2	$b_{\lambda,6}{}^6$	$b_{\lambda,6}$ -6
$B_{\rm g}^{-1}$	1644	1846	-454	1885	188	-543	-858	-738
$B_{\rm g}^{2}$	3814	-836	-1532	1424	-243	-658	-1444	-1245

В соответствии с (9) компоненты тензора деформации, определяющие магнитострикцию, получаем из уравнений

$$e(A_g^k, \boldsymbol{B}) = -\frac{n}{v} \sum_{p=1,2} S(A_g k p) [\langle V(A_g^p) \rangle_B - \langle V(A_g^p) \rangle_0]$$
(15)

$$e(B_g^k, \boldsymbol{B}) = -\frac{n}{v} \sum_{p=1,2} S(B_g k p) \langle V(B_g^p) \rangle_B.$$
(16)

	LiYF ₄ [68]	LiLuF ₄ [52]	LiTmF ₄ [52]	LiErF ₄ [52]
	<i>Т</i> =4.2 К	<i>Т</i> =77 К	<i>Т</i> =77 К 4.2 К	<i>T</i> =300K
$S(A_{g}11)$	7.78	7.79	7.35 7.89	7.79
$S(A_{\rm g}12)$	-2.33	-3.02	-2.65 -2.83	-2.5
$S(A_{g}22)$	3.36	4.11	3.85 3.78	3.26
<i>S</i> (<i>B</i> _g 11)	37.1	37.12	48.2 63.5	63.2
$S(B_{\rm g}12)$	8.0	13.62	18.87 28.6	24.2
$S(B_{\rm g}22)$	14.42	14.04	19.18 25.56	29.4
$S(E_{\rm g})$	5.78	5.65	5.8 5.91	5.9

Таблица 6. Упругие податливости кристаллов LiYF₄ и LiLnF₄ (в единицах 10^{-12} м³/H).

Как следует из приведенного выше обзора, до настоящего времени задача однозначного определения величин различных параметров, характеризующих спектральные и магнитные свойства концентрированных редкоземельных двойных фторидов, остается нерешенной. Рядом автором было подчеркнуто, что для выяснения причин расхождения вычисленных и измеренных характеристик магнитоупорядоченных фаз требуется более детальный анализ взаимодействий между редкоземельными ионами, в том числе, мультипольных, обусловленных виртуальным обменом фононами.

В настоящей работе выполнено исследование магнитных свойств монокристаллов LiLnF₄ (Ln=Tb, Ho, Dy) с помощью квантового СКВИД - магнетометра (MPMS Quantum Design) в лаборатории сверхнизких температур Каназавского университета (Япония), индуктивным методом и с использованием ЯМР-спектроскопии и построена теоретическая модель, удовлетворительно описывающая данные экспериментов.

Глава 2. Аппаратура и методика измерений

2.1. Метод выращивания и ориентирование образцов

Кристаллы LiTbF₄, LiHoF₄, LiTmF₄, LiDyF₄ были выращены методом Бриджмена-Стокбаргера в НИЛ МРС и КЭ Р.Ю. Абдулсабировым и С.Л. Кораблевой.

Суть метода Бриджмена-Стокбаргера состоит в создании зародыша кристалла на единственной границе между этим кристаллом и расплавом, и проведении кристаллизации в поле температурного градиента [69]. Кристаллизуемый материал – шихта, обычно находится в цилиндрическом графитовом тигле, а тигель опускают через поле температурного градиента или нагреватель поднимают вдоль тигля.

При выращивании монокристаллов из расплава важна степень чистоты исходных элементов, поэтому проводилась предварительная просушка исходных компонент. Процесс проводился в вакуумном сушильном шкафу при температуре 120 – 150⁰С в течение 12 часов при давлении ~ 13.3 Па.

Атмосферой, в которой проводился рост монокристаллов, является особо чистый аргон, заполняющий предварительно откаченную кристаллизационную камеру. Давление газа составляло ~ 1.1·10⁵ Па. Положительным фактором при выращивании фторидных соединений является фторирование рабочей среды, которое осуществлялось сжиганием кусочков тефлона.

Важнейшим фактором, влияющим на рост кристаллов при использовании метода Бриджмена – Стокбаргера, является величина температурного градиента. Регулируя величину температурного градиента, можно влиять на образование и свойства кристаллов, изменять степень вхождения примесей в кристалл.

В зависимости от особенностей кристаллизуемых веществ, размера и назначения кристалла скорость выращивания кристаллов устанавливалась экспериментально и менялась в широких пределах от 1 до 5 мм/час.

Рисунок 3. Образец монокристалла LiHoF₄ для измерения намагниченности.

После монокристаллов ориентирования с помощью рентгеновского дифрактометра (погрешность ориентирования составляет ±3°) им была придана 2 около MM форма шариков диаметром для компенсации влияния размагничивающего фактора на намагниченность. Во избежание поворота образцов сильных магнитных полях вследствие сильной магнитной В анизотропии, образцы фиксировались низкотемпературной эпоксидной смолой Stycast 1266A.

Для проведения измерений индуктивным методом были приготовлены шарики диаметром 3,5 мм, для измерения спектров ЯМР был приготовлен один шарик LiTbF₄ диаметром 6 мм.

2.2. Квантовый магнетометр

Измерения СКВИДнамагниченности проводились на квантовом магнетометре фирмы Quantum Design в университете г. Каназавы (Япония). Данный прибор фирмы Quantum Design Magnetic Property Measurement System (MPMS) – это аналитический инструмент, основанный на основе эффекта Джозефсона [70], специально предназначенный для изучения магнитных свойств небольших экспериментальных образцов в широком диапазоне температур и магнитных полей. Система состоит из двух основных компонент: (1) MPMS дюар и блок зонда, и (2) общая система управления. Автоматическое управление и накопление данных осуществляется с помощью компьютера и двух независимых контролирующих подсистем. Большинство других вспомогательных функций также автоматизировано.

Система MPMS включает в себя сверхпроводящий магнит (5.5 Тесла) со СКВИД (Superconducting Quantum Interference Device – Сверхпроводящий квантовый интерференционный прибор или механизм) – детектирующей системой и систему контроля за температурой, обеспечивающую высокоточные измерения в интервале температур от 1.9 до 400 К. Основные компоненты СКВИД – магнетометра (см. рисунок 4):

1. Компьютер с программным обеспечением для системы MPMS. Этот блок контактирует с двумя MPSM контролирующими подсистемами.

2. Электронная контролирующая часть, включающая контролер (1822 MPMS), мост (1802 R/G), систему контроля над газом и вакуумный насос, сверхпроводящий магнит (дает возможность изменять магнитное поле от -5.5 до +5.5 Тесла) и систему, обеспечивающую прецизионное продвижение образца в катушке СКВИДа.

3. Система охлаждения жидким гелием.

4. Криогенный зонд, включающий в себя модуль контроля за температурой (обеспечивает изменение температуры от 1.9 К до 400 К), связанный со сверхпроводящим магнитом и СКВИД - детектирующей системой.

5. Механическое устройство, осуществляющее движение образца, находящееся в верхней части модуля контроля температуры, и три стержня для закрепления образцов. Микрошаговый контролер с разрешением 3 микрона.

Рисунок 4. СКВИД – магнетометр (MPMS Quantum Design). 1- стержень для образца, 2- вращатель образца, 3- держатель образца, 4- зонд, 5- измеритель уровня гелия, 6- сверхпроводящий магнит, 7- СКВИД-система, 8- подставка для дюара, 9- дюар, 10- принтер, 11- источник питания магнита, 12- система управления температурой, 13- источник питания, 14- компьютер.

Пример измерения намагниченности с прецизионной точностью на СКВИДмагнетометре показан на рисунке 5 (переход в магнитоупорядоченное состояние монокристалла LiTbF₄).

Рисунок 5. Температурная зависимость намагниченности монокристалла LiTbF₄ в магнитном поле с напряженностью 0.0009 T, демонстрирующая переход в ферромагнитное состояние.

2.3 ЯМР-спектрометр с частотной протяжкой

Все исследованные в данной работе образцы являются концентрированными парамагнетиками, и стандартная аппаратура для наблюдения стационарного ЯМР с разверткой магнитного поля становится непригодной вследствие огромного нерезонансного поглощения и, как следствие, гигантского наклона базовой линии. Выход был один - надо было использовать ЯМР спектрометр с частотной разверткой и частотной модуляцией. Однако, ни одна отечественная и зарубежная фирма аналитического приборостроения до настоящего времени таких спектрометров не выпускает.

Только после создания такого прибора А.В. Егоровым в Казанском университете появилась реальная возможность регистрации спектров ЯМР ядер диамагнитных лигандов в концентрированных парамагнетиках. Главное преимущество такой оригинальной методики – получение точной информации о

распределении локальных полей в кристаллической решетке двойных фторидов редких земель.

Рисунок 6. Спектр ЯМР ¹⁹F в LiTbF₄ в магнитном поле B = 0.5 T при комнатной температуре ($B \perp c$, $\phi = 130^{\circ}$) с частотной протяжкой.

Угловые зависимости ЯМР спектров 19 F были измерены с помощью ЯМР спектрометра автодинного типа с частотной протяжкой и частотной модуляцией. Внешнее магнитное поле 0.5 T прикладывалось в базисной плоскости монокристалла LiTbF₄. Пример одного из записанных спектров показан на рисунке 6, где две линии соответствуют двум магнитно-неэквивалентным положениям ионов фтора.

2.4. Индуктивный метод для исследования угловых зависимостей намагниченности в кристаллах редкоземельных двойных фторидов LiLnF₄ (Ln=Ho, Dy)

Исследование угловой зависимости намагниченности в базисной плоскости двойных фторидов редких земель представляет интерес, так как именно в базисной плоскости анизотропия намагниченности появляется вследствие нелинейных по магнитному полю слагаемых (четвертого порядка) в энергии редкоземельного иона И может существенно зависеть OT электрондеформационного взаимодействия. СКВИД-магнетометр обладает пределом линейности в 1.25 emu, и не дает возможности измерять анизотропию намагниченности в случае ее большой величины: требуется использовать очень маленькие образцы (с диаметром порядка 1 мм), а ошибка в ориентировании и закреплении таких образцов в СКВИД-магнетометре очень велика (15-20%). Поэтому понадобилось создать поворотное устройство, с помощью которого можно было бы вращать образец в определенной плоскости и измерять намагниченность.

За основу был взят механизм, спроектированный и собранный М.С. Тагировым и Д. Абубакировым в НИЛ МРС Института физики КФУ в 2008 году.

Проектирование данного механизма было осуществлено с помощью прикладной программы AutoCad, а затем оно было изготовлено и испытано. Нижняя и верхняя части механизма показаны на рисунках 7 и 8, соответственно.

В криостат с жидким гелием помещается вставка (см. рисунок 9), внутри которой на конце находится катушка индуктивности, состоящая из двух одинаковых половинок, между которыми вращается капсула с образцом (2). Катушка индуктивности (4) вставляется в сверхпроводящий магнит (магнитное поле до 8 Т). Оси (1) обеих составных частей капсулы с образцом проходят через отверстия в стенках разъемного каркаса катушки индуктивности, причем одна из осей оканчивается шестеренкой (3) (см. рисунок 8).

Рисунок 7. Верхняя часть устройства для вращения образца. Винт микрометра и соединение со вставкой внутри магнита.

Катушка индуктивности крепится болтами к вставке, которая помещается в жидкий гелий. Вращение шестеренки вызывается вертикальным перемещением зубчатой планки (5), которая, в свою очередь, связана посредством тяги с микрометром. Вращение винта микрометра приводит к вертикальному перемещению тяги. Угол поворота шестеренки контролируется по шкале микрометра.

Шестеренка, зубчатая планка, держатель были изготовлены из органического стекла, части каркаса скрепляются латунными винтиками.

Рисунок 8. Нижняя часть устройства для вращения образца. (1) – ось капсулы с образцом, (2) – образец внутри капсулы, (3) – вращающаяся шестеренка, (4) – катушка индуктивности, (5) - зубчатая планка, которая связана посредством тяги с микрометром.

Индуктивность катушки с образцом, помещенной в сверхпроводящий магнит при температуре 4.2 К, измерялась с помощью LCR-метра E7-14 с использованием моста индуктивности, сбалансированного в нулевом магнитном поле на частоте 1 кГц. Три катушки моста находились при комнатной температуре, а четвертая - катушка индуктивности с образцом - внутри устройства вращения. Начальный фон от пустой катушки без образца был измерен независимо и был вычтен из результирующего сигнала. Образец был приклеен в капсуле, которая могла вращаться внутри сверхпроводящего магнита с точностью до 5°.

На данной установке были измерены угловые зависимости намагниченности LiDyF₄ и LiHoF₄ в плоскости *ab* кристаллической решетки в магнитном поле до 2 T, приложенном перпендикулярно оси *c* при температуре 4.2 K индуктивным методом. Кривые намагниченности M(B) были получены из экспериментальных

данных путем интегрирования полевых зависимостей производных d*M*/d*B* (в относительных единицах) при разных ориентациях образца. Пример полученных экспериментальных кривых показан на рисунке 10.

Рисунок 9. Полный проект устройства для вращения образца.

Рисунок 10. Пример полученных экспериментальных зависимостей дифференциальной намагниченности в заданном направлении внешнего магнитного поля.

Рисунок 11. Измеренные полевые зависимости намагниченности монокристалла LiHoF₄.

Полученные кривые были откалиброваны с использованием данных измерений намагниченности LiDyF₄ и LiHoF₄ с помощью СКВИД-магнетометра, полученных ранее.

Глава 3. Моделирование намагниченности и энергетического спектра ионов Tm³⁺ в монокристалле LiTmF₄

3.1 Эффективный гамильтониан ионов Tm³⁺ и свободная энергия LiTmF₄

Магнитные и магнитоупругие свойства кристаллов, содержащих редкоземельные ионы, определяются энергетическим спектром и структурой волновых функций основной электронной 4*f*^{*n*} конфигурации редкоземельных ионов.

Гамильтониан магнитной подсистемы, состоящей из ионов тулия, взаимодействующих с кристаллической решеткой со свободной поверхностью, запишем в виде

$$H = \sum_{Ls} H_{L,s} + H_{lat} + \sum_{Ls} \sum_{qj} \sum_{pk} \frac{1}{\sqrt{N}} B_p^k(s, qj) \exp(iq\mathbf{R}_{Ls}) O_p^k(Ls) Q(qj) .$$
(17)

Здесь $H_{L,s}$ - гамильтониан иона тулия с радиусом вектором R_{Ls} из подрешетки *s* (*s*=1,2) в ячейке *L* в статическом кристаллическом поле, H_{lat} - энергия кристаллической решетки в гармоническом приближении с нормальными координатами Q(qj) (*q* - волновой вектор фонона с частотой ω_{qj} , *j* -номер ветви колебательного спектра), последнее слагаемое в (17) представляет энергию электрон-фононного взаимодействия в линейном приближении по смещениям ионов из положений равновесия, *N* - число ячеек, $O_p^k(Ls)$ - линейные комбинации сферических тензорных операторов [71], действующих в пространстве электронных состояний иона тулия в узле *Ls*, $B_p^k(s,qj)$ - параметры взаимодействия, определяемые производными от соответствующих параметров кристаллического поля по смещениям ионов [1].

Рассматривая поправки к энергии ионов тулия во втором порядке по электрон-фононному взаимодействию при низких температурах ($k_BT \ll \hbar \omega_0$, k_B - постоянная Больцмана, ω_0 - предельная частота фононов) и учитывая лишь

смешивание электронных состояний с разностью энергий Δ << ħω₀, можно ввести эффективный гамильтониан взаимодействия между ионами тулия [72]

$$\Delta H = -\frac{1}{2} \sum_{LL'ss'} (1 - \delta_{LL'} \delta_{ss'}) \sum_{pp'kk'} \Phi_{pp'}^{kk'}(ss', \mathbf{R}_{LL'}^{ss'}) O_p^k(Ls) O_{p'}^{k'}(L's'), \qquad (18)$$

где $\boldsymbol{R}_{LL'}^{ss'} = \boldsymbol{R}_{Ls} - \boldsymbol{R}_{L's'}$, и

$$\boldsymbol{\Phi}_{pp'}^{kk'}(ss', \boldsymbol{R}_{LL'}^{ss'}) = \frac{1}{N} \sum_{qj} \omega_{qj}^{-2} B_{p}^{k}(s, qj) B_{p'}^{k'}(s', -qj) \exp(iq\boldsymbol{R}_{LL'}^{ss'}).$$
(19)

Двухчастичные взаимодействия (18) рассмотрим в приближении самосогласованного поля, пренебрегая членами второго порядка по отклонениям операторов $O_p^k(Ls)$ от их средних значений $\langle O_p^k(Ls) \rangle = \langle O_p^k \rangle$ (последнее равенство справедливо, если все магнитные ионы эквивалентны, в частности, для ионов Tm³⁺ в LiTmF₄).

Свободную энергию упруго деформированного кристалла во внешнем магнитном поле *B* (на элементарную ячейку с объемом *v*) запишем в виде:

$$F = \frac{v}{2} [eC'e + 2\sum_{r} eb(r)w(r) + \sum_{r,r'} w(r)a(r,r')w(r')] + \frac{n}{2}\sum_{pkp'k'} \left\langle O_{p}^{k} \right\rangle \lambda_{pp'}^{kk'} \left\langle O_{p'}^{k'} \right\rangle + \Delta F,$$

$$\Delta F = -\sum_{s} k_{B}T \ln Tr \exp(-H_{eff,s} / k_{B}T), \qquad (20)$$

где *C* ' - тензор "затравочных" упругих постоянных, *е* - тензор деформаций, *w*(*r*) - вектор смещения подрешетки *r*, *b*(*r*) – тензор постоянных связи макро- и микродеформаций, $a_{\alpha\beta}(r,r')$ - элементы динамической матрицы решетки в центре зоны Бриллюэна, $\lambda_{pp'}^{kk'}$ – матрица постоянных связи через поле фононов, *n* -число эквивалентных магнитных подрешеток (*n*=2 для кристаллов LiTmF₄), *H_{eff,s}* - эффективный одноионный гамильтониан, определенный ниже:

$$H_{eff} = H^{(0)} + H^{(P)}, \qquad (21)$$

$$H^{(0)} = H_0 + H_{cf} + H_Z, (22)$$

$$H^{(P)} = \sum_{\alpha\beta} V_{\alpha\beta} e_{\alpha\beta} + \sum_{\alpha,r} V_{\alpha}(r) w_{\alpha}(r) - \sum_{pkp'k'} \lambda_{pp'}^{kk'} < O_p^k > O_{p'}^{k'}.$$
 (23)

Первое слагаемое в (22) - гамильтониан *H*₀ свободного иона, второе слагаемое – энергия иона в кристаллическом поле, третье слагаемое – электронная зеемановская энергия

$$H_{z} = \mu_{B} \boldsymbol{B} (\boldsymbol{L} + 2\boldsymbol{S}); \qquad (24)$$

здесь *L* и *S* - орбитальный и спиновый моменты иона, соответственно. Первое и второе слагаемые в (23) определяют линейное взаимодействие редкоземельного иона с однородными макро- и микродеформациями, соответственно.

Гамильтониан свободного иона

$$H_{0} = \zeta \sum_{i} \boldsymbol{l}_{i} \boldsymbol{s}_{i} + \alpha L(L+1) + \beta \hat{G}(G_{2}) + \gamma \hat{G}(R_{7}) + \sum_{k} (F^{k} \hat{f}_{k} + P^{k} \hat{p}_{k} + T^{k} \hat{t}_{k} + M^{k} \hat{m}_{k})$$
(25)

включает энергию электростатического взаимодействия между 4*f* электронами (F^k – параметры Слэтера), энергию спин-орбитального взаимодействия с постоянной ζ , энергию спин-спинового взаимодействия и взаимодействия спин-чужая орбита с параметрами M^k , дополнительные слагаемые, определяемые параметрами P^k , T^k , α , β , γ , обусловлены межконфигурационным взаимодействием [73]. Использованные в настоящей работе матрицы операторов, представленных в гамильтониане (25), и неприводимых тензорных операторов в полном базисе состояний $4f^N$ конфигураций были построены М. В. Ванюниным [74], параметры, использованные в настоящей работе, приведены в таблице 7.

Электронные операторы $V_{\alpha\beta}$ и $V_{\alpha}(r)$ представим линейными комбинациями сферических тензорных операторов:

$$V_{\alpha\beta} = \sum_{pk} B^k_{p,\alpha\beta} O^k_p, \quad V_\alpha(r) = \sum_{pk} D^k_{p,\alpha}(r) O^k_p.$$
(26)

При учете трансляционной симметрии решетки из уравнений (18) и (19) получаем следующее выражение для элементов матрицы *λ* в последнем слагаемом в (23):

$$\lambda_{pp'}^{kk'} = \frac{1}{n} \sum_{ss'} \left[\sum_{j_o} \frac{B_p^k(s, 0j_o) B_{p'}^{k'}(s', 0j_o)}{\omega_{0j_o}^2} - \frac{\delta_{ss'}}{N} \sum_{qj} \frac{B_p^k(s, qj) B_{p'}^{k'}(s', -qj)}{\omega_{qj}^2} \right],$$
(27)

в первом слагаемом в (27) суммирование распространяется только на оптические ветви колебательного спектра.

Таблица 7. Параметры гамильтониана H_0 для ионов Tb³⁺, Dy³⁺, Ho³⁺, Tm³⁺ (cm⁻¹)

	2.	2.	2.	2.
	Tb ³⁺	Dy^{3+}	Ho ³⁺	Tm ³⁺
F^2	88831	91060	93948	101070
F^4	62913	63871	66313	70165
F^6	47147	49460	49372	51033
ζ	1694	1910	2134	2630
α	18.8	18.02	18.9	17.26
β	- 594	-633.4	-611	-624
γ	1593	1790	2013	2420
$\dot{\mathbf{P}}^2$	505	719	528	695
\mathbf{P}^4	252	359	396	300
P^6	51	71	264	70
\mathbf{M}^{0}	2.7	3.39	3	3.81
M^2	1.51	1.90	1.7	2.13
M^4	0.84	1.05	1.1	1.18
T^2	312	329	249	
T^3	40	36	37	
T^4	50	127	98	
T^6	- 395	-314	-316	
T^7	303	404	440	
T^8	317	315	372	

Одноионный вклад в свободную энергию (см. ур. (20)) запишем с точностью до членов второго порядка по характеристикам деформации решетки и отклонениям средних значений операторов O_p^k от соответствующих равновесных величин в отсутствие магнитного поля (для упрощения формул ниже предполагаем, что $\langle O_p^k \rangle_{B=0} = 0$). Рассматривая оператор (23) в качестве возмущения, и записав его в виде $H^{(P)} = \sum_{pk} A_p^k O_p^k = A: O$, получаем

$$\Delta F = n[F_0(\mathbf{B}) + \langle H^{(P)} \rangle_0 + \frac{1}{2}A : q : A], \qquad (28)$$

где $F_0(B) = -k_B T \ln Z$ - свободная энергия иона с гамильтонианом $H^{(0)}$, Z= $Tr[\exp(-H^{(0)}/k_B T)]$ - статистическая сумма, символ <...>_0 означает усреднение с равновесной матрицей плотности иона $\rho = \exp(-H^{(0)} / k_B T) / Z$, элементы матрицы q равны

$$q_{pp'}^{kk'} = \frac{1}{k_B T} [\langle O_p^k \rangle_0 \langle O_{p'}^{k'} \rangle_0 - \sum_i \langle \psi_i | \rho O_p^k | \psi_i \rangle \langle \psi_i | O_{p'}^{k'} | \psi_i \rangle] + \sum_{i,j \neq i} (\varepsilon_i - \varepsilon_j)^{-1} [\langle \psi_i | \rho O_p^k | \psi_j \rangle \langle \psi_j | O_{p'}^{k'} | \psi_i \rangle + \langle \psi_i | \rho O_{p'}^{k'} | \psi_j \rangle \langle \psi_j | O_p^k | \psi_i \rangle].$$

$$(29)$$

Здесь ε_i и ψ_i - собственные значения и собственные функции оператора $H^{(0)}$.

Используя условия термодинамического равновесия $\partial F / \partial < O_p^k >= 0$, $\partial F / \partial w_{\alpha}(r) = 0$ и введенное выше обозначение свертки по индексам p и k, получаем свободную энергию кристалла в виде

$$F = \frac{v}{2} eCe + nF_0 - \frac{n}{2} < O >_0: [\lambda : (1 + q : \lambda)^{-1} + \frac{n}{v} \sum_{rr'} \hat{D}(r) \hat{a}^{-1}(r, r') \hat{D}(r')]: < O >_0 + n < O >_0: [\hat{B} - \sum_{rr'} \hat{b}(r) \hat{a}^{-1}(r, r') \hat{D}(r')]e,$$
(30)

где $C = \hat{C}' - \sum_{rr'} \hat{b}(r)\hat{a}^{-1}(r,r')\hat{b}(r')$ - тензор упругих постоянных, и введены

следующие обозначения для величин, перенормированных электрондеформационным и электрон-фононным взаимодействиями:

$$\hat{a}_{\alpha\beta}(r,r') = a_{\alpha\beta}(r,r') + \frac{n}{\nu} D_{\alpha}(r) : q : (1+\lambda : q)^{-1} : D_{\beta}(r'), \qquad (31)$$

$$\hat{b}_{\alpha\beta,\gamma}(r) = b_{\alpha\beta,\gamma}(r) + \frac{n}{\nu} B_{\alpha\beta} : q : (1 + \lambda : q)^{-1} : D_{\gamma}(r), \qquad (32)$$

$$\hat{C}'_{\alpha\beta\gamma\delta} = C'_{\alpha\beta\gamma\delta} + \frac{n}{v} B_{\alpha\beta} : q : (1 + \lambda : q)^{-1} : B_{\gamma\delta}, \qquad (33)$$

$$\hat{D}_{\alpha}(r) = (1 + \lambda : q)^{-1} : D_{\alpha}(r), \ \hat{B}_{\alpha\beta} = (1 + \lambda : q)^{-1} : B_{\alpha\beta}.$$
(34)

Следует отметить, что с точностью до слагаемых второго порядка по параметрам электрон-деформационного взаимодействия зависимость упругих постоянных от температуры и магнитного поля может быть представлена выражением

$$C_{\alpha\beta\gamma\delta}(T,\boldsymbol{B}) = C_{\alpha\beta\gamma\delta}^{(0)} + \frac{n}{\nu} B_{\alpha\beta}^{(d)} : q : (1+\lambda : q)^{-1} : B_{\gamma\delta}^{(d)}, \qquad (35)$$

где вклады магнитной подсистемы определены вторым слагаемым, и перенормированные постоянные связи с макродеформациями равны

$$B_{p,\alpha\beta}^{(d)k} = B_{p,\alpha\beta}^k - \sum_{rr'\gamma\delta} b_{\alpha\beta,\gamma}(r) a_{\gamma\delta}^{-1}(r,r') D_{p,\delta}^k(r').$$
(36)

Изменения упругих постоянных (соответственно, скоростей и поляризации акустических волн) BO внешнем магнитном поле определяются соответствующими изменениями элементов матрицы q (см. (29)). Следует эффекты, отметить, не рассматриваем здесь магнитоупругие что ΜЫ обусловленные электрон-вращательным взаимодействием.

Индуцированное магнитным полем относительное изменение размеров кристалла в направлении, заданном единичным вектором с направляющими косинусами n_{α} , равно $\Delta l / l = \sum_{\alpha\beta} n_{\alpha} n_{\beta} e_{\alpha\beta}$, где компоненты тензора деформаций определяются из условия минимума свободной энергии (30):

$$\boldsymbol{e}(\boldsymbol{B}) = -\frac{n}{v} [\boldsymbol{S}\boldsymbol{B}_{eff} : <\boldsymbol{O} >_{0} |_{\boldsymbol{B}} - \boldsymbol{S}\boldsymbol{B}_{eff} : <\boldsymbol{O} >_{0} |_{\boldsymbol{B}=0}], \qquad (37)$$

здесь $B_{eff p, \alpha\beta}^{\ \ k} = \sum_{p'k'} [(1 + \lambda : q)^{-1}]_{pp'}^{kk'} B_{p', \alpha\beta}^{(d)k'}, S = C^{-1}$ - тензор упругих податливостей.

Уровни энергии ионов и их магнитные моменты во внешнем магнитном поле определяются введенным выше эффективным одночастичным гамильтонианом H_{eff} , в котором оператор возмущения принимает вид

$$H^{(P)} = \{ \boldsymbol{B}_{eff} \boldsymbol{e} - \langle O \rangle_{0} : [\frac{n}{\nu} \sum_{rr'} \hat{\boldsymbol{D}}(r) \hat{\boldsymbol{a}}^{-1}(r,r') \hat{\boldsymbol{D}}(r') + \lambda : (1+q:\lambda)^{-1}] \} : O.$$
(38)

В следующем разделе приведенные выше выражения для упругих постоянных, индуцированных магнитным полем деформаций решетки и эффективного гамильтониана парамагнитного иона используются для расчета соответствующих характеристик кристалла LiTmF₄.

3.2 Упругие постоянные, намагниченность и магнитострикция LiTmF4

Представленные ниже результаты получены с использованием численной диагонализации гамильтониана ионов Tm³⁺ в полном пространстве состояний

электронной конфигурации $4f^{12}$ (число состояний равно 91). Гамильтониан был свободного иона записан В стандартном виде c параметрами спин-орбитального межконфигурационного электростатического, И взаимодействий из работы [76] (см. таблицу 7). Величины параметров кристаллического поля B_p^k , использованные в настоящей работе, приведены в таблице 8.

Таблица 8. Параметры взаимодействия ионов Tm^{3+} с кристаллическим полем и деформациями B_g симметрии (в cm⁻¹).

p k	B_p^k	p k	$\boldsymbol{B}_p^{(d)k}(\boldsymbol{B}_g^1)$	$B_{eff p}^{k}(B_{g}^{1})^{*}$	$\boldsymbol{B}_p^{(d)k}(\boldsymbol{B}_g^2)$	$B_{eff p}^{k}(B_{g}^{2})^{*}$
2 0	184	2 2	1914	1571	4194	3646
4 0	-90	2 -2	1408	1337	-1030	-1169
4 4	-669	4 2	-600	-468	-1615	-1393
4 -4	-638	4 -2	1292	1141	1237	986
6 0	-4.06	6 2	-192	-164	-492	-443
64	-328	6 -2	-569	-480	-590	-424
6 -4	-294	66	-963	-858	-1375	-795
		6-6	-1067	-974	-1500	-910

*В отсутствие магнитного поля при температуре 4.2 К.

Вычисленные уровни энергии иона Tm^{3+} (см. таблицу 9, где приведены подуровни нижнего мультиплета ${}^{3}\text{H}_{6}$) хорошо согласуются с экспериментальными данными. Основное состояние ионов Tm^{3+} в кристаллическом поле - синглет $\Gamma_{2}(1)$, ближайшие уровни - дублет $\Gamma_{34}(1)$ и синглет $\Gamma_{1}(1)$ (волновые функции различных состояний электронной оболочки $4f^{42}$ ионов Tm^{3+} преобразуются по неприводимым представлениям Γ_{k} точечной группы S₄). Сравнение вычисленной температурной зависимости продольной магнитной восприимчивости с данными измерений (см. рисунок 12*a*) свидетельствует о наличии в исследованных образцах LiTmF₄ парамагнитных примесей, вклад которых в намагниченность существенно возрастает при температурах, меньших 10 К.

	Э	Расчет		
Симметрия	[19]	[77]	LiYF ₄ :Tm	(данная
			[78]	работа)
$\Gamma_2(1)$	0	0	0	0
$\Gamma_{34}(1)$	32	-	30	31
$\Gamma_1(1)$	57	71	55	62
$\Gamma_2(2)$	-	281	275	282
$\Gamma_2(3)$	-	319	305	313
$\Gamma_1(2)$	-	363	-	362
Γ ₃₄ (2)	-	-	-	381
$\Gamma_{34}(3)$	-	-	-	402
$\Gamma_1(3)$	-	-	-	415
$\Gamma_2(4)$	-	-	-	430

Таблица 9. Уровни энергии (сm⁻¹) иона Tm³⁺ (мультиплет ${}^{3}H_{6}$) в кристалле LiTmF₄.

Из результатов вычислений постоянных связи в операторе (38) в рамках модели обменных зарядов [25] и оптической пьезоспектроскопии кристалла LiTmF₄ [79] следует, что взаимодействие ионов Tm³⁺ с деформациями B_g симметрии играет доминирующую роль. Как следствие, можно ожидать, что основной вклад в мультипольное взаимодействие между ионами Tm³⁺ вносят динамические деформации Γ_2 симметрии (неприводимым представлениям B_g и A_u фактор группы C_{4h} соответствует неприводимое представление точечной группы S₄), взаимодействие с которыми может быть представлено линейными комбинациями восьми электронных операторов (см. ур. (14)): $O_2^2 = O_1$, $O_2^{-2} = O_2$, $O_4^2 = O_3$, $O_4^{-2} = O_4$, $O_6^2 = O_5$, $O_6^{-2} = O_6$, $O_6^6 = O_7$, $O_6^{-6} = O_8$. В соответствии с ур. (22), пренебрегая дисперсией оптических ветвей колебательного спектра, получаем

элементы матрицы λ_{ij} (*i*,*j*=1:8), определенной в пространстве указанных выше операторов, в виде

Рисунок 12. Измеренные в [60] (символы) и вычисленные (сплошные линии) температурные зависимости намагниченности монокристалла LiTmF₄: (*a*) в магнитном поле
$$B$$
=0.1 T, параллельном оси *c*; (*b*) в магнитных полях B =5.5 T (1) и 3 T (2, 3), перпендикулярных оси *c* и составляющих угол 12.5 градусов с осью *a*. Линия 3 представляет намагниченность в поле 3 T, вычисленную без учета мультипольного взаимодействия между ионами тулия.

Здесь $B_i(\Gamma^{\nu})$ - параметры в операторе взаимодействия ионов тулия с симметризованными смещениями подрешеток

$$H_{w} = \sum_{\Gamma \nu i} B_{i}(\Gamma^{\nu}) O_{i} w(\Gamma^{\nu}).$$
(40)

Численные оценки параметров мультипольного взаимодействия (39) были выполнены с использованием измеренных в [65] частот четных ($\omega(B_g^{\nu})$) и поперечных нечетных ($\omega(A_u^{\upsilon}TO)$) оптических колебаний симметрии B_g и A_u , соответственно, кристалла LiTmF₄ в центре зоны Бриллюэна и постоянных связи ионов тулия с соответствующими колебаниями $B_i(B_g^{\nu}), B_i(A_u^{\nu}TO)$, найденных из анализа температурных и магнитополевых эффектов в спектрах комбинационного рассеяния [64, 65] и расчетов в рамках модели обменных зарядов. Суммирование по акустическим колебаниям в последнем слагаемом в (39) было выполнено в рамках длинноволнового приближения, что позволило связать постоянные электрон-фононного взаимодействия $B_i(1, qj_a)$ параметрами С электрондеформационного взаимодействия (36). Соответствующие вклады в элементы матрицы λ_{ii} равны (в ед. 10^{-6} см⁻¹)

$$\Delta\lambda_{ij} = -\{4.48B_i^{(d)}(B_g^1)B_j^{(d)}(B_g^1) + 2.29[B_i^{(d)}(B_g^1)B_j^{(d)}(B_g^2) + B_i^{(d)}(B_g^2)B_j^{(d)}(B_g^1)] + 1.89B_i^{(d)}(B_g^2)B_j^{(d)}(B_g^2)\}.$$
(41)

Постоянные связи с однородными деформациями В_g симметрии приведены в таблице 9 (см. [25, 80]). Параметры мультипольного взаимодействия, уменьшенные в два раза по сравнению с вычисленными с целью согласования результатов расчетов температурных зависимостей упругих постоянных С11-С12, С₁₆ и С₆₆, определяющих изменение энергии решетки при деформациях В₈ симметрии, с данными измерений [52, 81] (см. рисунок 13), даны в таблице 10. параметры мультипольного Отметим, взаимодействия, ЧТО вклады В обусловленные взаимодействием ионов Tm³⁺ с акустическими колебаниями (последнее слагаемое в (39)) и индуцирующие дальнодействующие корреляции между состояниями парамагнитных ионов, играют доминирующую роль. Как следствие, в результате перенормировки (34) абсолютные величины параметров $B_{aff n}^{k}(B_{a}^{\nu})$ эффективного электрон-деформационного взаимодействия уменьшаются по сравнению с параметрами $B_p^{(d)k}(B_g^{\upsilon})$ (см. таблицу 8).

Рисунок 13. Измеренные (символы) [81, 52] и вычисленные (кривые) температурные зависимости упругих постоянных C_{16} (*a*), C_{66} (*b*) и C_{11} - C_{12} (*c*) монокристалла LiTmF₄.

i∖j	1	2	3	4	5	6	7	8
1	-32.4	-24.6	21.82	-24.7	4.58	11.92	10.13	13.48
2		28.34	-7.99	4.90	-3.21	1.582	7.23	-2.96
3			-0.90	2.06	-1.42	-0.22	-6.14	-2.20
4				-12.8	-0.80	2.15	6.34	0.512
5					-0.87	-0.52	-1.87	-0.76
6						-0.87	-2.49	-3.06
7							-2.95	-4.07
8								-2.83

Таблица 10. Параметры мультипольного взаимодействия $\lambda_{ij} = \lambda_{ji} (\text{cm}^{-1})$.

В расчетах магнитополевых эффектов магнитные диполь-дипольные взаимодействия были учтены в рамках приближения самосогласованного поля.

Локальное магнитное поле, действующее на ионы Tm³⁺ в подрешетке *s*, было представлено в виде

$$\boldsymbol{B}_{loc}(s) = \boldsymbol{B} + \sum_{s'} [\boldsymbol{Q}(s,s') - \frac{4\pi}{3\nu} N_m] \boldsymbol{M}(s'), \qquad (42)$$

где M(s) - магнитный момент иона в *s*-ой подрешетке (*s*=1,2), Q(s,s') решеточные суммы, вычисленные по методу Эвальда, и N_m - фактор размагничивания. В частности, $Q_{xx}(s,s) = Q_{yy}(s,s) = 1.18053$, $Q_{zz}(s,s) = 0.63894$, $Q_{xx}(1,2) = Q_{yy}(1,2) = 0.41738$, $Q_{zz}(1,2) = 2.16525$ (в единицах $4\pi/3v$). Основное внимание было уделено эффектам, проявляющимся в магнитных полях, ориентированных в базисной плоскости решетки и индуцирующих деформации B_g симметрии. В магнитном поле $B \perp c$, составляющем угол φ с кристаллографической осью *a*, относительное изменение размеров кристалла $\Delta l/l$ вдоль направления поля равно

$$\Delta l / l = e(A_g^2) + \frac{1}{2}\cos 2\varphi e(B_g^1) + \sin 2\varphi e(B_g^2).$$
(43)

Полученные значения $\Delta l/l$ при подстановке в (43) результатов вычислений компонент тензора деформаций в соответствии с уравнением (37) при температуре 4.2 К в полях с напряженностью до 3 Т удовлетворительно согласуются с данными измерений продольной магнитострикции цилиндрических образцов LiTmF₄ с образующими вдоль направлений [100] и [110] (см. рисунок 14*a*).

Обратный магнитострикционный эффект, а именно, изменение кристаллического поля вследствие деформации кристаллической решетки, наиболее ярко проявляется в расщеплениях некрамерсовских дублетов в полях, ориентированных в направлениях, которым соответствует нулевой g-фактор. В этом случае прямое (зеемановское) взаимодействие парамагнитного иона с магнитным полем расщепляет некрамерсовский дублет лишь во втором порядке теории возмущений.

Существенно большие расщепления могут проявиться вследствие индуцированных полем изменений структуры решетки. В частности, аномальные расщепления dv дублета $\Gamma_{34}(1)$ ионов тулия, изменяющиеся с ориентацией магнитного поля в базисной плоскости решетки, были обнаружены в оптических спектрах кристалла LiTmF₄ [82, 83] (см. рисунок 14*b*).

Рисунок 14. Полевые зависимости при температуре 4.2 К (*a*) продольной магнитострикции во внешнем магнитном поле $B(1 - B \parallel [100], 2 - B \parallel [110])$ и (*b*) расщепления дублета $\Gamma_{34}(1)$ в магнитном поле, ориентированном в базисной плоскости монокристалла LiTmF₄ под углом $\phi=10^{\circ}$ к оси *a*. Результаты расчетов представлены линиями, символы соответствуют экспериментальным данным [1, 11, 82, 83].

Как видно из рисунка 15, пренебрежение мультипольными взаимодействиями приводит к сильному противоречию между результатами вычислений, в которых используются параметры электрон-деформационного взаимодействия,

определенные из пьезоспектроскопических измерений [80], и экспериментальными данными (вычисленное максимальное расщепление более чем в два раза превышает измеренное).

Рисунок 15. Измеренная (символы) [82, 83] и вычисленная (кривая 1) ориентационная зависимость расщепления дублета $\Gamma_{34}(1)$ с энергией 31 см⁻¹ во внешнем магнитном поле *B*=4.05 Т в базисной плоскости монокристалла LiTmF₄, *T*=4.2 К. Кривая 2 получена без учета мультипольного взаимодействия.

Однако, при использовании оператора (38), содержащего перенормированные эффективные постоянные электрон-деформационного взаимодействия, вычисленные полевая (рисунок 14*b*) и ориентационная (рисунок 15) зависимости расщепления *dv* дублета $\Gamma_{34}(1)$ хорошо согласуются с измеренными.

Изменения электронной структуры парамагнитных ионов вследствие деформации решетки в магнитном поле обусловливают соответствующие дополнительные вклады в индуцированную полем намагниченность. Как и в случае рассмотренного выше расщепления дублета $\Gamma_{34}(1)$, без учета мультипольных взаимодействий мы получили завышенные величины магнитных моментов ионов тулия в магнитных полях, перпендикулярных оси *c*, с напряженностью выше 1 Т (см. рисунок 12*b* и рисунок 16).

Рисунок 16. Измеренные (символы) [60] и вычисленные зависимости намагниченности монокристалла LiTmF₄ от ориентации внешнего магнитного поля **B** (1 - B=0.3 T, 2 - B=1 T, 3 - B=2 T, 4 - B=3 T, 5 - B=5.5 T) в базисной плоскости решетки, T=4.2 К. Пунктирная линия представляет результаты расчета (B = 3 T) без учета мультипольного взаимодействия.

Измеренные температурные, полевые и ориентационные зависимости намагниченности хорошо воспроизводятся только расчетами, в которых используются те же параметры электрон-деформационного и мультипольного взаимодействия, что и в рассмотренных выше расчетах упругих постоянных, магнитострикции и спектра ионов тулия.

Выводы

В данной главе предложена теоретическая модель, послужившая основой для самосогласованного описания ранее опубликованных В литературе Рассмотрены экспериментальных данных. магнитные И магнитоупругие характеристики ванфлековского парамагнетика LiTmF₄ с учетом взаимодействия между ионами тулия через поле фононов. Вычислены параметры мультипольного взаимодействия, обусловленного взаимодействием ионов Tm³⁺ с динамическими деформациями решетки B_{g} симметрии. Представлено самосогласованное описание ранее опубликованных результатов измерений температурных зависимостей упругих постоянных, нелинейного эффекта Зеемана в оптическом LiTmF₄, зависимостей спектре монокристалла намагниченности И магнитострикции от температуры, величины и направления внешнего магнитного поля.

Глава 4. Намагниченность и локальные магнитные поля в монокристалле LiTbF₄

4.1. Кристаллическое поле и структура спектра ионов Tb³⁺ в LiTbF₄

В литературе представлены несколько различных наборов параметров кристаллического поля для ионов тербия в изоструктурных кристаллах LiTbF₄ [17] и LiYF₄:Tb³⁺ (ионы Tb³⁺ замещают ионы Y³⁺) [84-86, 75], найденных из анализа оптических спектров (см. таблицу 11). Основной терм ⁷F₆ иона Tb³⁺ расщепляется в кристаллическом поле на 7 подуровней, отвечающих неприводимым представлениям Γ_1 (три синглета), Γ_2 (четыре синглета) и Γ_{34} (три дублета) точечной группы симметрии S₄. Основное состояние иона Tb³⁺ - квазидублет, состоящий из двух синглетов Γ_2^k (k = 1, 2) с начальным расщеплением $\delta \approx 1$ см⁻¹, ближайшее возбужденное состояние (дублет Γ_{34}) имеет энергию Δ порядка 100 см⁻¹ [17, 31].

Таблица 11. Параметры кристаллического поля B_p^{k} (сm⁻¹), действующего на ионы Tb^{3+} в кристаллах LiTbF₄ и LiYF₄:Tb³⁺

	(1)	(2)	(3)	(4)	LiYF ₄ :	Настоящая
	[17]	[53]	[30]	[17]	${ m Tb}^{3+}$ [85]	работа
B_2^{0}	237	237	227.5	222.5	200	200
B_4^{0}	-54.1	-54.1	-121.2	-95	-100	-100.5
B_{6}^{0}	4	4	-30.3	0.25	-3.56	-2
B_4^{4}	-1130	-854.2	-946.5	-1171	-1103	-694
B_{4}^{-4}	0	-739	0	0	0	-829
B_{6}^{4}	-522	-477	-84.5	-534	-529	-435
B_{6}^{-4}	-201	-291	±93.8	-427	0	-283

Энергии подуровней основного мультиплета ${}^{7}F_{6}$ и g-фактор нижнего квазидублета, вычисленные с использованием параметров (1) (либо

эквивалентного набора параметров (2)) из таблицы 11 при рассмотрении оператора Гамильтона (22) в усеченном пространстве чистых состояний $|L=3, S=3, J=6, J_z>$ этого мультиплета, хорошо согласуются с данными измерений (см. таблицу 12, столбец 4, g_{||}=17.87). Однако, поскольку энергия ближайшего возбужденного мультиплета ⁷F₅ сопоставима с расщеплениями мультиплетов в кристаллическом поле, следует учитывать перемешивание мультиплетов в этом поле. Результаты расчета спектра ионов тербия с параметрами (1) в полном базисе из 3003 состояний электронной конфигурации 4f⁸ приведены в столбце 5 таблицы 12. Использованные в настоящей работе параметры гамильтониана свободного иона Tb³⁺ приведены в таблице 7.

Муль	типлет,	Экспери	ментальные	Рассчитанные			
сими	летрия	3H8	ачения	_	значени	ЯМ	
		LiTbF ₄	LiYF ₄ :Tb	(1)	(1a)		
		[17, 31]	[85-86, 75]				
1		2	3	4	5	6	
$^{7}F_{6}$	Γ_2	0	0	0	0	0	
	Γ_2	1.0	0.9	1.5	1.18	0.97	
	$\Gamma_{3,4}$	107	98	108	86	106.6	
	Γ_1	124	-	117	97.4	114.3	
	Γ_2	136	-	135	121	128.2	
	$\Gamma_{3,4}$	166	-	176	144	168.8	
	Γ_1	217	-	224	176	220	
	Γ_1	-	-	375	358	344	
	$\Gamma_{3,4}$	-	-	390	372	355	
	Γ_2	-	360	402	384	363	
⁷ F-	Га	_	2110	_	2121	2115 3	
15	Γ_{24}	_	-	_	2121	2113.3	
	$\Gamma_{3,4}$ Γ_1	_	-	_	2163	2120.2	
	Γ_1	-	_	-	2170	2168.5	
	$\Gamma_{3,4}$	-	2196	-	2169	2194	
	Γ_1	-	-	-	2322	2348	
	$\Gamma_{3,4}$	-	-	-	2380	2386	
	Γ_2	-	2400	-	2409	2396	
7							
$^{\prime}\mathrm{F}_{4}$	Γ_1	-	-	-	3297.5	3340	

Таблица 12. Энергетические уровни (см $^{-1}$) иона Tb $^{3+}$ в LiTbF₄ и LiYF₄.

	$\Gamma_{3,4}$	-	-	-	3390	3376
	Γ_2	-	-	-	3407	3405
	Γ_2	-	-	-	3482	3516
	Γ_1	-	-	-	3525	3518
	$\Gamma_{3,4}$	-	-	-	3598	3592
	Γ_1	-	-	-	3761	3776
${}^{7}F_{3}$	Γ_2	4333	-	-	4333	4348
	$\Gamma_{3.4}$	4406	-	-	4411	4417
	Γ_1	4473	-	-	4465	4479
	$\Gamma_{3.4}$	4524	-	-	4518	4521
	Γ_2	4532	-	-	4543	4528
	-					
${}^{7}F_{2}$	Γ_1	5035	-	-	5042	5034
_	Γ_2	5067	-	-	5080	5072
	$\Gamma_{3,4}$	5285	-	-	5217	5265
	$\Gamma_2^{3,1}$	5385	-	-	5347	5358
	2					
${}^{7}F_{1}$	Γ_1	5592	-	-	5557	5584
1	Γ_{34}	5690	-	_	5682	5683
	5,4					
$^{7}F_{0}$	Γ_1	5917	-	_	5861	5867
Ū	1					
${}^{5}D_{4}$	Γ_1	20561	20554	-	20551	20571
	Γ_{34}	20571	20559	-	20561	20561
	Γ_2	-	-		20568	20571
	Γ_1	20580	20568	-	20576	20596
	Γ_2	-	-	-	20632	20631
	Γ_{34}	20641	20627	-	20639	20645
	$\Gamma_1^{3,1}$	20654	20645	-	20655	20668
	1					
${}^{5}G_{6}$	Γ_2	-	40272	-	40270	40270
0	Γ_2	-	40273.2	_	40315	-
	Γ_{34}	-	40318.4	-	40316	40313
	$\Gamma_2^{3,1}$	-	40323.1	-	-	40321
	Γ_1^2	-	40340.5	_	-	40335
	Γ_1	-	40344.2	_	40348	40341
	Γ3.4	-	40352	-	40354	40345
	Γ_2	-	-	_	40358	-
	Γ_2	-	40387	_	40390	40384
	Γ_1	-	40402.2	_	40394	40395
	Γ_{34}	-	-	_	40461	40449
	Γ_1	-	-	_	40506	40491
	1					

таблицы 12, имеются существенные различия Как видно из между вычисленными (столбец 5) и измеренными (столбец 2) энергиями подуровней мультиплета. Расчет существенно основного дает заниженное полное расщепление мультиплета ${}^{7}F_{2}$ и, наоборот, завышенное расщепление мультиплета ⁷F₁, что свидетельствует о переоценке параметра B_2^{0} и заниженной величине параметра B_4^{0} . Эти различия послужили основанием для поиска более обоснованных величин параметров кристаллического поля в кристалле LiTbF₄, необходимых для интерпретации данных магнитных измерений.

В процедуре варьирования в качестве затравочных были использованы параметры, полученные в работе [85] (см. таблицу 11). Следует отметить, что имеющейся информации об энергии подуровней нижних мультиплетов ⁷F_J и ⁵D₄ и одного из вышележащих мультиплетов (⁵G₆) электронной конфигурации 4*f*⁸ недостаточно для однозначного определения как параметров гамильтониана (25), так и параметров кристаллического поля. В частности, как отмечалось выше, анализ энергетического спектра дает возможность определить параметры $B_4^{\pm 4}$, $B_6^{\pm 4}$ лишь с точностью до произвольного поворота системы координат относительно оси симметрии решетки *с* (собственные значения оператора (1) инвариантны относительно преобразования

$$B_{p}^{4} = B_{p}^{4} \cos(4\varphi) + B_{p}^{-4} \sin(4\varphi),$$

$$B_{p}^{-4} = -B_{p}^{4} \sin(4\varphi) + B_{p}^{-4} \cos(4\varphi),$$
(44)

где *p*=4, 6, и *φ* - угол поворота).

Для определения набора из 7 параметров кристаллического поля в кристаллографической системе координат для редкоземельного иона с точечной симметрией S_4 необходимо рассмотреть свойства иона при наличии направленных внешних возмущений, в частности, внешнего магнитного поля. Ранее в работе [30] с целью определения параметров кристаллического поля в кристаллах LiLnF₄ (Ln=Tb, Dy, Ho, Er, Yb) в кристаллографической системе координат была исследована анизотропия нелинейной магнитной восприимчивости в базисной плоскости решетки. Однако приведенная в этой работе величина параметра B_2^{0}

для кристалла LiTbF₄ завышена, как и в [17] (см. таблицу 11), а в анализе данных измерений не учитывалось магнитоупругое взаимодействие.

В настоящей работе величина параметра B_2^0 была фиксирована по измеренному расщеплению мультиплета ⁷F₁. Для уточнения величин остальных шести параметров были проведены измерения температурных и полевых зависимостей намагниченности сферического образца LiTbF₄, результаты соответствующих вычислений сравнивались с экспериментальными данными, представленными в следующих двух параграфах. Полученные в итоге величины параметров кристаллического поля приведены в таблице 11 (отметим, что знаки параметров $B_4^{\pm 4}$ выбраны с учетом выполненных ранее расчетов в рамках модели обменных зарядов [12]), а вычисленные с использованием этих параметров энергии – в столбце 6 таблицы 12. Рассчитанные энергии подуровней мультиплетов ⁷F₆, ⁷F₃ и ⁷F₂ согласуются удовлетворительно с измеренными энергиями, однако остается заметное различие между результатами расчета и экспериментальными данными для мультиплета ${}^{5}D_{4}$. В частности, два нижних подуровня $\Gamma_{3,4}$ и Γ_{1} мультиплета ⁵D₄ поменялись местами. Возможно, что эти подуровни испытывают существенно различные сдвиги, обусловленные электрон-фононным взаимодействием и смешиванием основной и возбужденных электронных конфигураций.

4.2. Продольная намагниченность монокристалла LiTbF₄

Как уже было отмечено в Главе 1, физические свойства кристаллов LiTbF₄ как модельной системы со специфическими особенностями диполь-дипольного упорядочения изучались детально во многих лабораториях. Соединение LiTbF₄ является изинговским дипольным ферромагнетиком с осью намагничивания, совпадающей с направлением кристаллографической оси *с*. Фазовый переход монокристалла LiTbF₄ из парамагнитного в ферромагнитное состояние при понижении температуры до T_c =2.885 К [15] обусловлен в основном магнитным диполь-дипольным взаимодействием между некрамерсовыми ионами Tb³⁺.

При низких температурах ($k_{\rm B}T \ll \Delta$) практически заселен лишь основной квазидублет, и поскольку подуровни Γ_2 симметрии смешиваются лишь составляющей внешнего магнитного поля **B**, параллельной оси симметрии решетки [001], магнитные свойства кристалла LiTbF₄ можно рассматривать в рамках модели изинговского трехмерного магнетика в поперечном поле, роль которого играет начальное расщепление квазидублета δ .

Эффективный гамильтониан магнитной подсистемы, содержащей ионы тербия, можно записать, используя операторы компонент эффективного спинового момента S_{α}^{i} ионов Tb³⁺ (S = 1/2, ионы нумеруем индексами *i*, *j*) в виде

$$H_{eff} = -\frac{1}{2} \sum_{i,j} \left[\frac{(g_{\parallel} \mu_B)^2}{v} K_{ij} + J_{ij} \right] S_z^i S_z^j - \sum_i (\delta S_x^i + g_{\parallel} \mu_B B_z S_z^i),$$
(45)

где первая сумма соответствует парным магнитным диполь-дипольным $(K_{ij} = v(3z_{ij}^2 - r_{ij}^2)/r_{ij}^5, v = a^2c/2$ - объем элементарной ячейки, r_{ij} - вектор, соединяющий два иона Tb³⁺) и обменным взаимодействиям. Собственный магнитный момент ионов Tb³⁺ имеет лишь одну отличную от нуля проекцию на оси кристаллографической системы координат, параллельную оси симметрии решетки. Вследствие большой величины эффективного g-фактора $g_{\parallel} =$ $2g_L < \Gamma_2^{-1} |J_z| \Gamma_2^{-2} > = 17.85$ [26] ($g_L = 3/2$ - фактор Ланде) магнитное диполь-дипольное взаимодействие играет основную магнитном упорядочении. роль В Дальнодействующий характер этого взаимодействия является основанием для приближения поля использования самосогласованного при расчете низкотемпературных магнитных характеристик кристалла LiTbF₄.

Локальное магнитное поле, действующее на парамагнитные ионы Tb³⁺ в монокристаллическом образце в направлении [001], в рамках приближения самосогласованного поля представляется суммой внешнего магнитного поля $B_{\rm z}$, молекулярного поля $B_{\rm M} = \lambda M$ и размагничивающего поля $B_{\rm D} = -NM$, где M – намагниченность, равная удвоенному магнитному моменту ионов тербия, деленному на объем элементарной ячейки. Постоянная молекулярного поля $\lambda = \lambda_{\rm D} + \lambda_{\rm J}$, где параметр $\lambda_{\rm D} = \Sigma_j K_{ij}/2$ определяет дипольное поле. Полученное

суммированием решетке методу Эвальда значение λъ по по равно $(4\pi/3)^{-1}.3965=5.85$. Величина постоянной обменного поля $\lambda_{\rm J} = v \Sigma_i J_{ii}/2(g_{\parallel}\mu_{\rm B})^2$ определяется, в основном, обменным взаимодействием ближайших соседей. Обменные интегралы, определяющие взаимодействие ИОНОВ тербия с ближайшими соседями (4 иона на расстоянии 0.375 nm, $J_1 = -0.3624 \pm 0.125$ cm⁻¹), а также и со следующими за ближайшими четырьмя ионами (на расстоянии 0.518 nm, $J_2 = 0.07 \pm 0.14$ cm⁻¹), полученные из анализа данных по квазиупругому рассеянию нейтронов в работе [44], были приведены в Главе 1. Соответствующая постоянная молекулярного поля равна $\lambda = 5.23 \pm 0.56$. В рамках приближения самосогласованного поля величину постоянной λ можно связать с наблюдаемой температурой магнитного упорядочения Т_C:

$$1 = \lambda \frac{(g_{\parallel} \mu_{\rm B})^2}{v\delta} th(\frac{\delta}{2k_{\rm B}T_{\rm C}}).$$
(46)

Подставив в (46) значения $\delta = 1 \text{ cm}^{-1}$ и $T_{\rm C} = 2.89$ К, получаем оценку постоянной молекулярного поля снизу (поскольку пренебрежение флуктуациями магнитных моментов приводит к завышенной величине температуры перехода), $\lambda > 4.36$. В парамагнитной фазе при достаточно низких температурах ($T_{\rm C} < T << \Delta/k_{\rm B}$) и в слабых магнитных полях ($B_z << \delta/(g_{\parallel}\mu_{\rm B}) \approx 0.1$ Т) намагниченность образца вдоль кристаллографической оси *с* решетки можно представить в виде

$$M_{z} = B_{z} \left[\lambda \left(\frac{th(\delta/2k_{B}T_{C})}{th(\delta/2k_{B}T)} - 1 \right) + N \right]^{-1}.$$
(47)

В кристалле с превалирующим диполь-дипольным взаимодействием между парамагнитными ионами при понижении температуры ниже точки Кюри образуются домены с нулевым фактором размагничивания (длинные тонкие цилиндры с образующей вдоль оси намагничивания) [23]. При этом суммарный магнитный момент кристалла MV (V – объем кристалла) в отсутствие внешнего поля остается равным нулю. В слабом внешнем магнитном поле домены частично переориентируются, так что возникающее размагничивающее поле B_D полностью компенсирует внешнее поле B_z , и намагниченность кристалла равна предельному

значению выражения (47) при $T \to T_C$: $M_z = B_z/N$ - при выполнении условия $B_z < M_0/N = B_c$, где M_0 - спонтанная намагниченность при заданной температуре образца, удовлетворяющая уравнению

$$\frac{\delta}{\left[\delta^{2} + (g_{\parallel}\mu_{B}\lambda M_{0})\right]^{1/2}} \frac{th\{\left[\delta^{2} + (g_{\parallel}\mu_{B}\lambda M_{0})\right]^{1/2}/2k_{B}T\}}{th(\delta/2k_{B}T_{c})} = 1.$$
(48)

Таким образом, зависимость наведенной намагниченности от внешнего магнитного поля линейна при $T < T_{\rm C}$, насыщение намагниченности наступает при переориентации всех доменов.

На рисунке 17 измеренная при температуре 2 К намагниченность является линейной функцией внешнего магнитного поля (прямая 1), соответствующий ей фактор размагничивания равен $N = 3.91 \pm 0.2$ (для сферического образца N = 4.19).

Рисунок 17. Намагниченность монокристалла LiTbF₄ как функция напряженности внешнего магнитного поля (*M* || *B* || *c*) при температурах 2 K (1), 5 K (2), 10 K (3), 20 K (4), 77 K (5). Экспериментальные данные представлены символами, результаты расчетов - сплошными линиями [A-1].

На рисунке 18 данные (6) представляют результаты измерений температурной зависимости намагниченности в очень слабом поле (0.0009 Т). При уменьшении температуры увеличение намагниченности хорошо описывается выражением (47) с постоянной молекулярного поля $\lambda_{exp} = 4.525$ и фактором размагничивания N = 4.11, соответствующим горизонтальному участку кривой $M_z(T)$. Таким образом, отношение энергии обменного (антиферромагнитного) взаимодействия ближайших соседей к энергии их магнитного диполь-дипольного взаимодействия может достигать величины -0.42.

Рисунок 18. Температурная зависимость намагниченности монокристалла LiTbF₄ в магнитном поле $\boldsymbol{B} \parallel c$; $\boldsymbol{B} = 5$ T (1); 1 T (2); 0.6 T (3); 0.3 T (4), 0.1 T (5), 0.0009 T (6) [A-1]. Экспериментальные данные представлены символами, сплошные линии – результаты расчета. Спонтанная намагниченность представлена данными (7) из работы [15].

Представленные на рисунках 17, 18 сплошными линиями результаты расчетов получены с использованием приведенной выше величины λ_{exp} . Намагниченность

 $M_z(B_z,T)$ в зависимости от внешнего поля B_z при заданной температуре T была получена графически из условия пересечения на плоскости M_z , $B_{loc,z}$ кривых

$$M_z(B_{loc,z}) = (B_{loc,z} - B_z)/(\lambda_{exp} - N),$$
 (49)

$$M_{z}(B_{loc,z}) = \frac{2}{v} \frac{Sp[m_{z} \exp(-H(B_{loc,z})/k_{B}T)]}{Sp[\exp(-H(B_{loc,z})/k_{B}T)]}.$$
(50)

В уравнении (49) $m_z = -\mu_B \sum_k (l_{z,k} + 2s_{z,k})$ - оператор *z*-компоненты магнитного

момента иона тербия (суммирование проводится по 4*f* электронам), гамильтониан иона в магнитном поле имеет вид

$$H(B_{loc,z}) = H_0 + H_{cf} - m_z B_{loc,z}.$$
 (51)

Разрыв производной $(\partial M_z(B_z,T)/\partial T)_{B_z}$ имеет место при пересечении кривых $M_z(B_z,T)$ и $M_0(T)$, представляющих соответственно температурные зависимости индуцированной и спонтанной намагниченности. Кривая (7) на рисунке 18 представляет спонтанную намагниченность кристалла LiTbF₄ по результатам исследования магнитного рассеяния нейтронов в работе [15]. Практически, как видно из приведенных на рисунке 18 температурных зависимостей намагниченности в полях 0.0009 и 0.1 Т, аналогичная информация о спонтанной намагниченности дипольного ферромагнетика может быть получена и из существенно более простых измерений индуцированной намагниченности.

Измеренные температурные и полевые зависимости намагниченности в магнитных полях, параллельных оси *с* решетки, хорошо воспроизводятся расчетами при использовании найденных в настоящей работе параметров кристаллического поля (см. таблицу 11, в частности, $[(B_4^4)^2 + (B_4^{-4})^2]^{1/2} = 1081 \text{ см}^{-1}$ и $[(B_6^4)^2 + (B_6^{-4})^2]^{1/2} = 519 \text{ см}^{-1})$, которые отличаются лишь незначительно от соответствующих параметров, определенных для иона Tb³⁺ в LiYF₄ из анализа данных оптической спектроскопии (отметим что в [84] вместо точечной симметрии S_4 в позициях ионов тербия предполагалась симметрия D_{2d}). Для определения параметров B_p^4 и B_p^{-4} (p=4 и 6), мы использовали дополнительные данные о поведении намагниченности в зависимости от температуры, величины и

направления внешнего магнитного поля, перпендикулярного оси симметрии решетки.

4.3. Намагниченность монокристалла LiTbF₄ в базисной плоскости

В настоящей работе намагниченность сферического моно-кристаллического образца была измерена в статических магнитных полях с напряженностью до 5 Т, перпендикулярных оси симметрии *с* решетки, при температурах 2-300 К.

При повышении температуры и заселении возбужденных некрамерсовских магнитным полем B $\perp c$ дублетов. сильно смешиваемых С близко расположенными синглетными состояними, можно было ожидать существенных изменений поперечной намагниченности. На рисунке 19 представлены результаты измерений поперечной намагниченности в широком интервале температур образца в полях с индукцией 1, 3 и 5 Т. Вследствие гигантского различия (до двух порядков величины в поле с индукцией 1 Т) продольной и поперечной магнитных тербия небольшое восприимчивостей ИОНОВ даже отклонение внешнего магнитного поля от базисной плоскости может существенно исказить результаты измерений. Из сравнения данных измерений при различных направлениях внешнего магнитного поля относительно оси симметрии решетки мы оценили погрешность $\delta \phi < 0.8^{\circ}$ в ориентации поля относительно плоскости *x*, *y* в экспериментах, результаты которых представлены на рисунке 19. Небольшое уменьшение намагниченности при изменении температуры от 3 до 20 К обусловлено уменьшением соответствующего вклада продольной составляющей магнитного момента ионов тербия (ср. с рисунком 18). При дальнейшем повышении температуры поперечная намагниченность существенно возрастает и достигает максимума при температуре 80-90 К.

Вычисления намагниченности $M || B \perp c$, результаты которых представлены на рисунке 19, выполнены в рамках одноионного приближения с использованием оператора Гамильтона (22) ионов Tb³⁺.

65

Рисунок 19. Температурная зависимость намагниченности монокристалла LiTbF₄ в магнитном поле $B \perp c$; B = 5 T (1); 3 T (2); 1 T (3) [A-1]. Данные измерений представлены символами, расчет намагниченности выполнен с использованием параметров кристаллического поля, полученных в данной работе (сплошные линии), а также, при B = 5 T, с параметрами, приведенными в работах [85] - кривая (a); [17] - кривая (b), [30] - кривая (c).

Немонотонный характер температурной зависимости поперечной намагниченности обусловлен аномально большой величиной индуцированного полем магнитного момента на нижнем подуровне ближайшего к основному состоянию некрамерсовского дублета Г₃₄ с энергией 108 ст⁻¹, расщепление этого дублета в сравнении со сдвигами подуровней основного квазидублета в зависимости от магнитного поля представлено ниже на рисунке 20а. Как видно из 19, рисунка результаты вычислений намагниченности с использованием имеющихся в литературе наборов параметров кристаллического поля (см. таблицу 11) существенно отличаются от экспериментальных данных. Сравнительно небольшая корректировка (см. таблицу 11) параметров кристаллического поля, приведенных в [86], на основе результатов расчетов в рамках модели обменных зарядов дает возможность удовлетворительно описать как энергии штарковских подуровней терма ${}^{7}F_{6}$ (в частности, вычисленная величина расщепления основного квазидублета $\delta = 1.09$ сm⁻¹, g - фактор g_{||} = 17.90, энергия ближайшего дублета $\Delta = 106.6$ сm⁻¹), так и температурные и полевые зависимости намагниченности. Результаты соответствующих вычислений представлены сплошными линиями на рисунке 19.

Как следует из теории, представленной в Главе 1, в концентрированных редкоземельных парамагнетиках существенный вклад в намагниченность может обусловлен взаимодействием. В быть магнитоупругим кристалле LiTbF₄ энергии вследствие большой возбужденных тербия состояний ИОНОВ относительно основного состояния (квазидублет), подуровни которого могут смешиваться первом приближении только вследствие весьма слабого В взаимодействия С полносимметричными деформациями, магнитоупругое В взаимодействие подавлено. частности, вынужденная магнитостриция монокристаллов LiTbF₄ в сопоставимых магнитных полях на один-два порядка величины меньше, чем в LiTmF₄ [53]. Эффективный поперечный g-фактор основного квазидублета равен нулю, при низких температурах ван-флековская восприимчивость не велика, и практически отсутствует магнитная анизотропия в базисной плоскости в полях, меньших 10 Т [84]. Представленные выше результаты вычислений намагниченности практически не изменяются при учете электрон-деформационного взаимодействия. Однако в сильных магнитных полях, порядка 10 Т и выше, можно ожидать существенного влияния электрондеформационного и электрон-фононного взаимодействия на магнитные свойства LiTbF₄ при низких температурах вследствие уменьшения щели в энергетическом спектре ионов тербия между основным квазидублетом и подуровнями первого возбужденного некрамерсовского дублета (см. рисунок 20а). С целью апробации параметров развитой нами модели мы проанализировали представленные в

67

работах [84, 87] результаты измерений намагниченности монокристаллов LiTbF₄ в сильных импульсных магнитных полях.

Зависимости намагниченности ориентированных образцов (прямоугольные стержни с размерами $1.5 \times 1.5 \times 2.5 \text{ мм}^3$) LiTbF₄ от напряженности магнитного поля, направленного в плоскости *ab* вдоль [100] и [110] направлений (совпадающих с длинной гранью стержня) были измерены при температурах 1.4 K, 4.2 K, 10 K, 15 K [85]. Магнитное поле изменялось от 0 до 50 T в течение 20 µs. В этом случае интерпретация данных измерений осложняется необходимостью учета конечной скорости релаксации заселенностей уровней энергии ионов тербия. Температура образцов, как следует из результатов измерений, изменяется в течение импульса. Следуя авторам работы [84], мы выполнили расчеты намагниченности в предположении отсутствия контакта с термостатом (адиабатический процесс).

Изменение температуры ΔT магнитной подсистемы в адиабатическом процессе, обусловленное увеличением поля с шагом ΔB , можно представить следующим выражением

$$\Delta T = -T \frac{\langle H_{eff}(\boldsymbol{B})\boldsymbol{m} \rangle - \langle H_{eff}(\boldsymbol{B}) \rangle \langle \boldsymbol{m} \rangle}{\langle H_{eff}(\boldsymbol{B})^2 \rangle - \langle H_{eff}(\boldsymbol{B}) \rangle^2} \Delta \boldsymbol{B} .$$
(52)

Здесь *m* и $H_{\text{eff}}(B)$ - оператор магнитного момента и эффективный гамильтониан (см. ур.(21, 22, 38)), соответственно, иона Tb³⁺.

В магнитоупорядоченном состоянии локальное поле на ионе тербия Tbs (*s*=1, 2) записывается в следующем виде

$$B_{loc,\alpha}(Tbs) = B_{\alpha} + \sum_{\beta} \left[\sum_{s'=1,2} Q_{\alpha\beta}(Tbs, Tbs') + 2\frac{4\pi}{3\nu} (\lambda_{is} - N_{\alpha}) \delta_{\alpha\beta} \right] m_{\beta}(Tb) .$$
(53)

Дипольные решеточные суммы были приведены выше, размагничивающий фактор стержня $N_x = N_y = 3/2$ [88], $N_z = 0$ (для доменов в системе с доминирующим диполь-дипольным взаимодействием), константа изотропного обменного (антиферромагнитного) поля $\lambda_{is} = -0.316$ была также приведена выше. В парамагнитной фазе для исследованных стержней фактор размагничивания N, соответствующий ориентации поля вдоль длинной оси, равен 0.68 [84].

Рисунок 20. Дифференциальная магнитная восприимчивость монокристалла полях **В**||[100] и **В**||[110], LiTbF₄ в магнитных *T*=1.4 K. Символы экспериментальные данные из [87], сплошные и пунктирные линии представляют без результаты расчетов, выполненных с учетом И учета электрондеформационного взаимодействия, соответственно. Ha вставках: (a)рассчитанные энергии трех нижних подуровней (Г₂, Г₂, Г₃₄) мультиплета ⁷F₆ относительно основного состояния в магнитного поля $B \parallel [110]$; (b) – рассчитанные компоненты вектора намагниченности вдоль (индуцированный момент M_x) и перпендикулярно (спонтанный момент M_z) к направлению внешнего магнитного поля **В**||[100].

Для учета упорядоченных магнитных моментов вдоль оси *с* было введено малое начальное внешнее магнитное поле 0.01 Т. С увеличением магнитного поля, перпендикулярного оси легкого намагничивания [001], расстояние между нижним подуровнем первого возбужденного Γ_{34} состояния и основным квази-дублетом уменьшается (вставка (*a*) на рисунке 20), и пик дифференциальной магнитной восприимчивости наблюдается в точке антипересечения. Как пример, поведение спонтанного магнитного момента с увеличением поперечного внешнего

магнитного поля и индуцированного магнитного момента вдоль поля показаны на вставке (b) рисунка 20.

Расчеты дифференциальной магнитной воприимчивости, результаты которых представлены сплошными линиями на рисунке 20, были выполнены с учетом взаимодействия ионов тербия с деформациями A_g и B_g симметрии, были параметры электрон-деформационного использованы взаимодействия, приведенные в таблице 5 в Главе 1, и упругие постоянные кристалла LiYF₄; мультиполные взаимодействия не учитывались. Как видно из сравнения дифференциальных вычисленных измеренных восприимчивостей, И используемые нами параметры кристаллического поля согласуются с наблюдаемой в сильных магнитных полях анизотропией намагниченности в LiTbF₄. Учет базисной плоскости кристалла электрон-деформационного взаимодействия возможность максимумов лает совместить положения измеренной и вычисленной восприимчивостей в поле *B*, параллельном кристаллографическим осям а либо b. Положение максимума вычисленной поле В [[110] также существенно приближается к восприимчивости В соответствующей точке антипересечения. Тем не менее, остается заметное различие между ширинами вычисленных и измеренных пиков дифференциальной восприимчивости в области антипересечений. Это различие может быть обусловлено использованием в расчетах заниженных величин параметров электрон-деформационного взаимодействия И упругих податливостей пренебрежением мультипольными взаимодействиями. Следует отметить, что основной проблемой в анализе магнитоупругих свойств кристаллов LiTbF₄ остается интерпретация данных измерений вынужденной магнитострикции в магнитном поле B [[100], представленных в работе [53]. Результаты выполненных вычислений продольной магнитострикции нами при использовании представленных в литературе различных наборов параметров электрондеформационного взаимодействия и упругих постоянных двойных фторидов лития-редких земель отличаются знаком и на порядок величины меньше данных измерений. Для решения этой проблемы необходимы дополнительные

экспериментальные исследования анизотропии низкотемпературной магнитострикции LiTbF₄ в полях, ориентированных в базисной плоскости решетки.

В работе [84] с целью описания результатов измерений намагниченности в сильных импульсных магнитных полях был введен эффективный гамильтониан квадрупольных взаимодействий

$$H_{Q} = -G^{\alpha} < O_{2}^{0} > O_{2}^{0} - G^{\gamma} < O_{2}^{2} > O_{2}^{2} - (G^{\delta} / 4) < \Omega_{2}^{2} > \Omega_{2}^{2}$$
(54)

с параметрами $G^{\alpha} = 34.5$, $G^{\gamma} = 69$, $G^{\delta} = 345$ см⁻¹. Данные параметры соответствуют суммарным вкладам в эффективное квадруполь-квадрупольное взаимодействие, индуцируемое как статическими, так и динамическими деформациями решетки. Следует отметить, что, оставаясь в рамках принятых приближений, в операторе (54) следовало учесть и перекрестные слагаемые вида $G(\langle O_2^2 \rangle \Omega_2^2 + \langle \Omega_2^2 \rangle O_2^2)$, которые, в отличие от кристаллов со структурой циркона, в частности, TbVO₄, на характеристики которых ссылаются авторы работы [84], не запрещены симметрией решетки LiTbF₄.

Таблица 13. Параметры мультипольного взаимодействия $\lambda_{ij} = \lambda_{ji} (cm^{-1})$ в кристалле LiTbF₄.

j	1	2	3	4	5	6	7	8
i								
1	36.4	-26.5	75.95	-42.5	3.96	63.2	1.1	23
2		149.6	-102.4	90.7	-43.3	2.15	15.5	-58.1
3			42.2	-59	-0.38	19.3	-26.9	16.4
4				46.7	-25.9	-7.16	9.99	-47.9
5					-5	0.53	-8.61	3.52
6						-0.58	-10.4	-17
7							-0.07	-13
8								0.45

Заметим также, что параметры квадрупольных взаимодействий в ванадате тербия и двойном фториде тербия могут очень сильно различаться, в частности, знаками, вследствие существенного различия расщеплений и расположения подуровней основного мультиплета ионов тербия в соответствующих кристаллических полях.

Рисунок 21. Магнитная восприимчивость монокристалла LiTbF₄ в магнитных полях *B*||[100] и *B*||[110], *T*=1.4 К. Символы – экспериментальные данные [84], результаты расчетов представлены сплошными линиями.

Мы выполнили оценки параметров мультипольного взаимодействия λ_{ij} между ионами тербия, обусловленного динамическими деформациями Γ_2 симметрии, пренебрегая последним слагаемым в выражении (39), поскольку минимальная энергия виртуальных электронных возбуждений ионов Tb³⁺ при Γ_2 деформациях сопоставима с максимальной энергией акустических колебаний [21]. Вычисленные параметры приведены в таблице 13. Отметим, что параметры квадрупольного взаимодействия λ_{11} , λ_{22} , λ_{12} по величине сравнимы с параметрами G^{γ} и G^{δ} , введенными в [84].
Вычисленные с учетом мультипольных взаимодействий между ионами тербия при использовании упругих постоянных кристалла LiYF₄ и увеличенных в 1.2 раза параметров электрон-деформационного взаимодействия в кристалле LiDyF₄ (см. ниже Главу 6, таблица 20) дифференциальные магнитные восприимчивости сравниваются с данными измерений на рисунке 21.

В области антипересечений вычисленные полевые зависимости намагниченности удовлетворительно согласуются с данными [87], но остается различие между результатами вычислений (максимальные величины восприимчивостей и положение максимума в поле **В** [[110]) и приведенными позже экспериментальными данными в работе [84]. Как уже было подчеркнуто описания выше, для самосогласованного магнитных И магнитоупругих характеристик кристалла LiTbF₄ требуются дополнительные исследования магнитострикции в полях, ориентированных в базисной плоскости решетки.

4.4 Ориентационная зависимость спектра ЯМР ядер ¹⁹F в монокристалле LiTbF₄ при комнатной температуре

Ранее ЯМР спектры ¹⁹F в кристалле LiTbF₄ при 295 К изучались Хансеном и др. [3]. Параметры суперсверхтонкого взаимодействия между ионами Tb³⁺ и ядрами ¹⁹F и ⁷Li был получены из сравнения рассчитанных ЯМР спектров с экспериментальными данными. Локальные магнитные поля, индуцированные магнитными моментами ионов Tb³⁺ на ядрах ¹⁹F были рассчитаны с использованием результатов измерений магнитной восприимчивости кристалла LiTbF₄, представленных в работах [27, 30].

В настоящей работе спектры ЯМР ядер фтора в кристалле LiTbF₄ были измерены при комнатной температуре на спектрометре с частотной разверткой и частотной модуляцией (см. параграф 2.3). В магнитных полях, перпендикулярных оси симметрии *с* решетки, наблюдаются две линии резонансного поглощения, соответствующие двум кристаллографически неэквивалентным позициям ионов фтора. Измеренные при вращении образца вокруг оси *с* угловые зависимости резонансных частот в поле B=0.5 Т ($B \perp c$) приведены на рисунке 22.

Для интерпретации угловых зависимостей ЯМР спектров ¹⁹F нужно вычислить локальные магнитные поля, действующие на ядра ¹⁹F. Локальные поля зависят от среднего значения магнитных моментов ионов Tb^{3+} . Магнитные моменты были вычислены с учетом взаимодействия ионов тербия со статическим кристаллическим полем и деформациями решетки и магнитных (дипольдипольных и обменных) взаимодействий между ионами Tb^{3+} .

Элементарная ячейка LiLnF₄ содержит 8 ионов фтора. Во внешнем магнитном поле, лежащем в плоскости *ab*-решетки, имеются две магнитно эквивалентные подсистемы (обозначаемые ниже индексами *s*=1, 2) ядер ¹⁹F, включающие в себя по четыре подрешетки ионов фтора с соответствующими базисными векторами $\mathbf{r}_k(s)$: $\mathbf{r}_1(1)=(ax, ay, cz), \mathbf{r}_2(1)=(-ax, -ay, cz), \mathbf{r}_3(1)=(ax, a(y-0.5), c(0.25-z)), \mathbf{r}_4(1)=(-ax, -a(y-0.5), c(0.25-z)); \mathbf{r}_1(2)=(-ay, ax, -cz), \mathbf{r}_2(2)=(ay, -ax, -cz), \mathbf{r}_3(2)=(-a(y-0.5), ax, -c(0.25-z)), \mathbf{r}_4(2)=(a(y-0.5), -ax, -c(0.25-z))$. При температуре 295 К постоянные решетки монокристалла LiTbF₄ равны a=0.5192, c=1.0875 нм, x=0.2802, y=0.1619, z=0.0810 [15].

Таблица 14. Дипольные решеточные суммы (в единицах $4\pi/3v$)

αβ	xx	xy	XZ	уу	yz	ZZ.
$Q_{\alpha\beta}(Tb1,F_1(1))$	0.1971	2.8226	-1.7445	3.8486	-2.3506	-1.0458
$Q_{\alpha\beta}(Tb1,F_3(1))$	0.1925	-1.3327	-3.1669	-0.7825	2.4262	3.5900

Энергию суперсверхтонкого взаимодействия ядра иона фтора $F_k(s)$ с ионами тербия Тb λ запишем в виде

$$H(ks) = \sum_{\lambda} I(ks) \hat{a}(ks, \lambda) J_{\lambda}.$$

В соответствии с выражением (52), локальные магнитные поля на ядрах ¹⁹F в LiTbF₄ в парамагнитной фазе равны (в кристаллографической системе

координат):

$$B_{loc,x}(F_{k}(s)) = B_{x} + [Q_{xx}(Tb1, F_{k}(s)) + Q_{xx}(Tb2, F_{k}(s)) + \varepsilon_{xx}(ks) - 2\frac{4\pi}{3\nu}N]m_{x}$$
(55)
+ $[Q_{xy}(Tb1, F_{k}(s)) + Q_{xy}(Tb2, F_{k}(s)) + \varepsilon_{xy}(ks)]m_{y},$
$$B_{loc,y}(F_{k}(s)) = B_{y} + [Q_{xy}(Tb1, F_{k}(s)) + Q_{xy}(Tb2, F_{k}(s)) + \varepsilon_{yx}(ks)]m_{x}$$
+ $[Q_{yy}(Tb1, F_{k}(s)) + Q_{yy}(Tb1, F_{k}(s)) + \varepsilon_{yy}(ks) - 2\frac{4\pi}{3\nu}N]m_{y}.$ (56)

Дипольные решеточные суммы были рассчитаны методом Эвальда (см. таблицу 14). Вклады в компоненты тензора суперсверхтонкой структуры $a_{\alpha\beta}(ks,\lambda)$, обусловленные переносом электронной спиновой плотности с парамагнитных ионов на лиганды, рассматривались как варьируемые параметры. Отметим, что соответствующие тензоры $\varepsilon_{\alpha\beta}(ks)$ содержат вклады, обусловленные взаимодействием между ядрами ¹⁹F и двумя ближайщими ионами тербия, Tb1 и Tb2, $\hat{\varepsilon}(ks) = A(ks) / (g_J \mu_B \gamma_F \hbar)$, где $A(ks) = \sum_{\lambda} a(ks,\lambda)$. Дипольные суммы и тензора

 $\hat{\boldsymbol{\varepsilon}}(ks)$ подчиняются соотношениям симметрии, в частности,

$$\begin{split} &Q_{xx}(Tb1,F_{1}(2)) = Q_{yy}(Tb1,F_{1}(1)), \quad Q_{yy}(Tb1,F_{1}(2)) = Q_{xx}(Tb1,F_{1}(1)), \\ &Q_{xy}(Tb1,F_{1}(2)) = -Q_{xy}(Tb1,F_{1}(1)), \quad \varepsilon_{xx}(12) = \varepsilon_{yy}(11), \quad \varepsilon_{yy}(12) = \varepsilon_{xx}(11), \\ &\varepsilon_{xy}(12) = -\varepsilon_{xy}(11), \quad Q_{\alpha\beta}(Tb2,F_{1}(1)) = Q_{\alpha\beta}(Tb1,F_{3}(1)), \\ &Q_{\alpha\beta}(Tb2,F_{3}(1)) = Q_{\alpha\beta}(Tb1,F_{1}(1)), \quad \text{где } \alpha, \beta = x, y. \end{split}$$

Три независимых параметра, $\varepsilon_{xx}(11) = -1.743$, $\varepsilon_{xy}(11) = -0.279$ и $\varepsilon_{yy}(11) = -1.481$ (в единицах of $4\pi/3v$) были найдены из сопоставления рассчитанных резонансных частот ядер ¹⁹F $v(s) = \gamma_F [B_{loc,x}(1s)^2 + B_{loc,y}(1s)^2]^{1/2}$ (здесь $\gamma_F/2\pi = 40.07$ МГц/Т - гиромагнитное отношение для ядер фтора) с результатами измерений. Полученные константы суперсверхтонкого взаимодействия сравниваются с величинами, представленными в [3] в таблице 15.

Рисунок 22. Угловая зависимость резонансных частот в спектре ЯМР ¹⁹F в LiTbF₄ в магнитном поле 0.5 T ($B \perp c$), T=295 K. Кружочки соответствуют экспериментальным данным, сплошные кривые представляют результаты расчетов, в которых использовались параметры суперсверхтонкого взаимодействия, найденные в данной работе [A-2].

Таблица 15. Константы суперсверхтонкого взаимодействия LiTbF₄, 10⁻⁴ см⁻¹

	Настоящая работа,	Работа [3],
	точность ±0.04	погрешность ±0.12
$A_{xx}(11)$	-0.915	-0.726
$A_{xy}(11)$	-0.146	0.0044
A _{yy} (11)	-0.778	-0.780

Полученные нами диагональные компоненты тензора суперсверхтонкого взаимодействия близки к соответствующим параметрам в работе [3], а недиагональные компоненты намного больше параметра, приведенного ранее в [3]. Величины параметры суперсверхтонкого взаимодействия, вкладов в диполь-дипольному соответствующие магнитному взаимодействию между фтора ионами тербия и перенесенной спиновой плотности, ядрами И сопоставимы по абсолютной величине, но имеют разные знаки (такой же вывод был сделан в работах, в которых изучалась суперсверхтонкая структура спектров ЭПР в разбавленных парамагнетиках LiYF₄:Yb³⁺ [89], LiYF₄:Nd³⁺ [90]).

Выводы

В данной работе измерены температурные И полевые зависимости намагниченности монокристалла LiTbF₄ при различных ориентациях магнитного поля относительно кристаллографических осей решетки. Из анализа данных измерений продольной намагниченности в магнитных полях, параллельных и перпендикулярных оси симметрии решетки с, при температурах ниже и выше температуры магнитного упорядочения T_C=2.89 К, найдены характеристики молекулярного поля и параметры кристаллического поля. Из анализа измеренной зависимости спектра ЯМР 19 F в монокристалле LiTbF₄ от ориентации внешнего магнитного поля получены значения констант суперсверхтонкого взаимодействия между ядрами фтора и ионами тербия.

Выполнен расчет намагниченности и дифференциальной магнитной восприимчивости в полях с напряженностью до 50 T с учетом магнитоупругого и электрон-фононного взаимодействия и получено удовлетворительное согласие с экспериментальными данными, представленными в литературе [84, 87].

Глава 5. Намагниченность и магнитострикция в монокристалле LiHoF₄

5.1 Кристаллическое поле в монокристалле LiHoF₄

Кристалл LiHoF₄ рассматривается во многих работах как модельный изинговский дипольный ферромагнетик с осью легкого намагничивания, совпадающей по направлению с кристаллографической осью c. В литературе представлены несколько различных наборов параметров кристаллического поля для ионов гольмия в кристаллах LiHoF₄, найденных из анализа оптических спектров (см. таблицу 16).

Таблица 16. Параметры кристаллического поля B_p^{k} (сm⁻¹), действующего на ионы Ho³⁺ в кристаллах LiHoF₄

	(1)	(2)	(3)	Настоящая
	[A-6]	[91]	[18]	работа
B_2^{0}	219.7	190.35	190	200.35
B_4^{0}	-87.3	-78.25	-78	-84.25
B_6^{0}	-3.55	-3.25	-3.2	-3.5
B_4^{-4}	-710	-657.2	869	-667.24
B_{4}^{-4}	-612	-568.6	0	-578.63
B_6^4	-387	-364	427	-364.04
B_{6}^{-4}	-253.7	-222.3	105	-222.3

Штарковская структура уровней энергии показана в таблице 17 в сравнении с экспериментально измеренными значениями [18] и рассчитанными путем диагонализации вышеприведенного Гамильтониана (21) в полном базисе 1001 состояний. Основной терм ${}^{5}I_{8}$ электронной оболочки 4f¹⁰ расщепляется на 13 уровней: 9 синглетов и 4 дублета. Основное состояние – некрамерсов дублет Г₃₄ и два вышележащих возбужденных состояния – синглеты Г₂.

^{2S+1} I	LΓ	Эксперим.	Расчет	$^{2S+1}L_{I}$ Γ	Эксперим.	Расчет
${}^{5}I_{8}$	34	0	0	${}^{5}F_{5}$	15485	15480
0	2	7.4	7.35	34	15495	15484
	2	23.1	18.88	_	15505	15500
	1	49	49.68		15550	15541
	1	61	58 72	34	15605	15614
	34	72.1-78	68.88	51	10000	15624
	1	/2.1 /0	202.14		15630	15633
	34		259.12	34	15050	15654
	1		259.12	51		15051
	2		267.25	⁵ S2	18490	18487
	34		280.86	52	18507	18489
	1		280.00	34	18511	18517
	1		202.47	54	10511	18525
⁵ L-	$\frac{2}{2}$	5146	2)3.03 51/6 3			10525
1/	34	5140	5150.3	⁵ E.	18613	18618
	27	5154	5155.1	• 4	18621	18620
	1	5154	5158.8	34	10021	18627
	34	5177	5170.3	54	18680	18601
	1	5200	5106.0	34	10009	18603
	34	5200	5220	54	18717	18093
	54 2	5225	5220		10/1/	18710
	$\frac{2}{2}$	5225	5283.4			10/17
	24	5285	5285.4	⁵ E. 34	20632	20632
	1	5201	5285.9	13 54	20032	20032
⁵ L	2	3291 8644	3267.1 86/3 /		20030	20032
16	2 1	8650	8647.1	24	20710	20704
	3/	8656	8650 5	54	20757	20754
	34	8050	8656.5		20708	20730
	24	8657	8661	⁵ E.	21140	21140
	2 1	8668	8664.0	1.5	21140	21140
	1	8008	8672 1	34	21187	21142
	2 1	8735	8747 1	54	21107	21107
	24	8733	8747.1 8758 1		21210	21230
))	8750	8768 /	$^{3}\mathbf{K}_{a}$	21271	21360
⁵ L	31	11210	11221	18	21371	21309
15	J 4 1	11217	11221		21300	21377
	3/	11227	11217			21301
	27	11227	11223	34	21300	21381
	1	11228	11227	34	21370	21380
	1	11220	11220	54	21400	21369
	34	11278	11200		21410	21413
	ン4 つ	11304	11215	21	21433	21405
5 _T	⊥ 1	12185	12186	54	214/3	21400
14	1 2/	13760	13100		21/83	21400
)+)	13200	13251	21	21403	21400
	∠ 2	13321	13312	54	2147/	21490
	ے 1	13321	13325			21471
	1 2/		13300			
	5 4 1	13520	13513			
	1	13320	15515			

Таблица 17. Экспериментальные и вычисленные уровни энергии ионов гольмия в LiHoF₄.

Использованные в настоящей работе параметры гамильтониана свободных ионов Ho³⁺ приведены в таблице 7. Из таблицы 17 видно, что получено хорошее согласие экспериментальных данных и расчета.

5.2 Магнитострикция в монокристалле LiHoF₄

Магнитострикция в монокристалле LiHoF₄ была измерена в работе [92]. Изменение размеров монокристалла измерялось вдоль направления кристаллографической оси *c*, а внешнее магнитное поле прикладывалось в базисной плоскости *ab*. При расчете величины магнитострикции использовались уточненные параметры электрон-деформационного взаимодействия. Величины параметров электрон-деформационного взаимодействия, использованные в настоящей работе, приведены в таблице 18.

Таблица 18. Параметры взаимодействия ионов Ho^{3+} с деформациями A_g и B_g симметрии, использованные в работе (в сm⁻¹).

p k	$B_p^{(d)k}(A_g^1)$	$B_p^k(A_g^2)$	p k	$\boldsymbol{B}_p^{(d)k}(\boldsymbol{B}_g^1)$	$B_p^k(B_g^2)$
2 0	-398.2	-1692.9	2 2	2045	4114
4 0	308	1100	2 -2	2305	-886
4 4	5061.3	5280.4	4 2	-854	-1554
4 -4	3761.8	5602.5	4 -2	1449	1423
60	235.4	-166.1	62	135	-528
64	1930.8	3194.9	6 -2	-427	-523
6 -4	950.8	3009.7	66	-606	-927
			6 -6	-691	-1046

Вычисленные с использованием приведенных выше параметров кристаллического поля и параметров ЭДВ изменения размеров кристалла

 $\Delta l / l = \sum_{\alpha\beta} n_{\alpha} n_{\beta} e_{\alpha\beta}$ приведены на рисунке 23. Видно, что качественное согласие

очень хорошее, но при температуре 1.6 К расчет дает заниженные значения, близкие к значениям при температуре 1.8К.

Рисунок 23. Магнитострикция в монокристалле LiHoF₄ вдоль кристаллографической оси *с* в магнитном поле, приложенном в плоскости *ab*, при разных температурах в зависимости от величины квадрата внешнего магнитного поля. Точки – экспериментальные данные [92], сплошные линии - расчет.

С полученными выше уточненными параметрами кристаллического поля и параметрами ЭДВ были рассчитаны полевые зависимости магнитострикции вдоль направления внешнего магнитного поля, заданного направляющими косинусами n_{α} . Результаты качественно согласуются с данными измерений (Кротов В.И., не опубликовано) (см. рисунок 24).

Рисунок 24 Полевые зависимости при температуре 4.2 К продольной магнитострикции во внешнем магнитном поле B (1 – $B \parallel$ [110], 2 – $B \parallel$ [210]) монокристалла LiHoF₄. Результаты расчетов представлены линиями, символы соответствуют экспериментальным данным.

5.3 Намагниченность монокристалла LiHoF₄

Результаты расчетов намагниченности монокристалла LiHoF4 в зависимости от магнитного поля, направленного вдоль осей а и с решетки, при различных и угловой зависимости намагниченности при вращении поля в температурах базисной плоскости сравниваются экспериментальными С данными на рисунках 25-27. Полевые и температурные зависимости намагниченности монокристалла LiHoF₄ были измерены с помощью СКВИД-магнетометра, угловые зависимости намагниченности – индуктивным методом. Как следует из расчетов, существенная анизотропия намагниченности обусловлена в основном магнитоупругим взаимодействием, которое вносит относительно большой вклад в величину намагниченности при температурах, меньших 10 К, и в полях B > 0.5 Т.

Рисунок 25. Полевые (а) и температурные (b) зависимости намагниченности вдоль оси *а* монокристалла LiHoF₄. Сплошные линии – теория, символы – экспериментальные данные [A-6].

При расчете намагниченности вдоль кристаллографической оси а учитывалась погрешность в ориентировании монокристалла (из-за маленького диаметра шарика 2 мм), которая составила 6⁰ в плоскости *ас* кристаллической решетки. На рисунке 27 показана угловая зависимость намагниченности монокристалла LiHoF₄ в базисной плоскости. Видно, что анизотропия намагниченности практически отсутствует. Вклад электрон-фононного взаимодействия не значителен и в расчете не учитывался. Анизотропия намагниченности в базисной плоскости выражена очень слабо и магнитоупругое взаимодействие намного слабее, чем в LiTmF₄ и LiDyF₄, что подтверждается большой величиной магнитострикции в этих монокристаллах.

Рисунок 26. Полевые (а) и температурные (b) зависимости намагниченности вдоль оси *с* монокристалла LiHoF₄. Сплошные линии – теория, символы – экспериментальные данные [A-6].

Рисунок 27. Угловые зависимости намагниченности в базисной плоскости монокристалла LiHoF₄ при T=4.2 К. Сплошные линии – теория, символы – экспериментальные данные [A-2].

5.4 Кривая фазового равновесия монокристалла LiHoF₄

В работе [48] было показано, что в LiHoF₄ наблюдается как классический температурный фазовый переход в ферромагнитное состояние (поперечное магнитное поле $B_t=0$) так и квантовый фазовый переход ($B_t=B_c, T\rightarrow 0$). Получена фазовая диаграмма перехода в ферромагнитное состояние (рисунок 2).

В данной работе был выполнен расчет кривой фазового равновесия. В рамках приближения самосогласованного поля величину постоянной молекулярного поля λ можно связать с наблюдаемой температурой магнитного упорядочения T_C (46):

$$1 = \lambda \frac{(g_{\parallel} \mu_{\rm B})^2}{v\delta} th(\frac{\delta}{2k_{\rm B}T_{\rm C}}),$$

где g_{\parallel} - эффективный g-фактор основного дублета, равный 13.8 [48], $T_C = 1.53$ К – температура перехода в магнитоупорядоченное состояние в нулевом магнитном поле, δ – расщепление основного дублета (рисунок 28а).

Рисунок 28 Полевая зависимость a - расщепления основного дублета; b - эффективного g_{\parallel} - фактора основного дублета монокристалла LiHoF₄ в зависимости от приложенного внешнего поперечного магнитного поля при температуре 4.2 К.

В нулевом магнитном поле получаем простое соотношение между постоянной молекулярного поля и температурой упорядочивания:

$$1 = \lambda \frac{(g_{\parallel} \mu_{\rm B})^2}{v} \frac{1}{2k_{\rm B} T_{\rm C}(B=0)}.$$
(57)

Из (57) следует, что $\lambda \frac{(g_{\parallel} \mu_{\rm B})^2}{\nu} = 2k_B T_C (B=0)$. Подставляя полученное выражение в

(46), получаем условие для нахождения температуры перехода в магнитоупорядоченное состояние в зависимости от приложенного магнитного поля:

$$\frac{\delta(B=B_0)}{2kT_C(0)} = th(\frac{\delta(B=B_0)}{2k_BT_C(\delta)}), \qquad (58)$$

где б зависит от приложенного магнитного поля (рисунок 28а). Значения расщеплений б были получены путем диагонализации Гамильтониана (21). Решения уравнения (58) были найдены, используя следующие преобразования: выражение $\frac{\delta(B=B_0)}{2kT_C(0)}$ обозначим за *a*, а выражение $\frac{\delta(B=B_0)}{2k_BT_C(\delta)}$ обозначим за *x*. Тогда гиперболический тангенс можно разложить на составляющие следующим образом: $a = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$. Проведя несложные преобразования, получаем $e^{-2x} = \frac{1-a}{1+a}$, и после логарифмирования и подставления обозначенных величин *a* и *x* получаем уравнение относительно температуры перехода в магнитоупорядоченное состояние в ненулевом магнитном поле:

$$T_{C}(\delta) = -\frac{\delta(B = B_{0}) / k_{B}}{\ln \frac{1 - \delta / 2k_{B}T_{C}(0)}{1 + \delta / 2k_{B}T_{C}(0)}}.$$
(59)

Результат расчета показан на рисунке 29 - кривая (1). Хорошее согласие получено при относительно высоких температурах и в слабых магнитных полях.

Рисунок 29. Кривая равновесия фаз монокристалла LiHoF₄, сплошными линиями показаны результаты расчетов (1 – без учета сверхтонкого взаимодействия, 2- с учетом сверхтонкого взаимодействия, 3 – с учетом поправки к постоянной молекулярного поля λ, экспериментальные данные показаны точками [48].

При низких температурах необходимо учитывать сверхтонкое взаимодействие (спин ядра Ho^{3+} равен 7/2) и изменение эффективного g-фактора под воздействием внешнего магнитного поля. Спиновый гамильтониан основного дублета можно записать в виде (при температурах ниже T_C заселен только нижний дублет Γ_{34}):

$$H = g_{\parallel} \mu_B B_z S_z + A S_z I_z + \delta S_x, \tag{60}$$

где $I_z = m = +7/2...-7/2$, $H = S_z(a + A_m) + \delta S_x$, $a = g_{\parallel} \mu_B B_z$, $A_m = A \cdot I_z$.

Находим собственные значения гамильтониана (60):

$$E_m = \pm \frac{1}{2} ((a + A_m)^2 + \delta^2)^{1/2}; (S_z)_m = \pm \frac{a + A_m}{2 |E|}.$$
 (61)

Среднее значение оператора $\langle S_z \rangle$ можно найти по формуле:

$$\left\langle S_{z}\right\rangle = \frac{\sum_{m} (S_{z})_{m} e^{-E_{m}/kT}}{\sum_{m} e^{-E_{m}/kT}}.$$
(62)

Далее $\langle S_z \rangle \rightarrow 0$ в приведенном ниже выражении

$$\left\langle S_{z} \right\rangle = \frac{\sum_{m} \frac{a + A_{m}}{\left(\left(a + A_{m}\right)^{2} + \delta^{2}\right)^{1/2}} \sinh \frac{\left(\left(a + A_{m}\right)^{2} + \delta^{2}\right)^{1/2}}{2kT}}{2\sum_{m} \cosh \frac{\left(\left(a + A_{m}\right)^{2} + \delta^{2}\right)^{1/2}}{2kT}},$$
(63)

где правая часть раскладывается в ряд по малым значениям аргумента $a \sim S_z > ($ отбрасываем члены второго порядка малости по a^2):

$$\left\langle S_{z} \right\rangle = \frac{\sum_{m} \frac{a}{((A_{m})^{2} + \delta^{2})^{1/2}} \sinh \frac{((A_{m})^{2} + \delta^{2})^{1/2}}{2kT}}{2kT} + \frac{\sum_{m} \cosh \frac{(A_{m})^{2} + \delta^{2})^{1/2}}{2kT}}{(2aA_{m} + A_{m}^{2} + \delta^{2})^{1/2}} \sinh \frac{(2aA_{m} + A_{m}^{2} + \delta^{2})^{1/2}}{2kT}}{2kT}.$$
(64)
$$+ \frac{\sum_{m} \frac{A_{m}}{(2aA_{m} + A_{m}^{2} + \delta^{2})^{1/2}} \sinh \frac{(2aA_{m} + A_{m}^{2} + \delta^{2})^{1/2}}{2kT}}{2kT}.$$

Приведя подобные члены, получаем уравнение

$$\left\langle S_{z}\right\rangle = \frac{g_{\parallel}\mu_{B}\lambda\left\langle S_{z}\right\rangle}{2\sum_{m}\cosh\frac{E_{m}}{2kT}}\sum_{m}\left\{\frac{\delta^{2}}{E_{m}^{3}}\sinh(\frac{E_{m}}{2kT}) + \frac{A_{m}^{2}}{E_{m}^{2}}\frac{1}{2kT}\cosh(\frac{E_{m}}{2kT})\right\},\tag{65}$$

где $E_m = (A_m^2 + \delta^2)^{1/2}$. В результате, сократив $\langle S_z \rangle$, получаем уравнение относительно температуры перехода в магнитоупорядоченное состояние $T(\delta)$:

$$1 = \frac{g_{\parallel}\mu_{B}\lambda}{2\sum_{m}\cosh\frac{E_{m}}{2kT}} \sum_{m} \left\{ \frac{\delta^{2}}{E_{m}^{3}}\sinh(\frac{E_{m}}{2kT}) + \frac{A_{m}^{2}}{E_{m}^{2}}\frac{1}{2kT}\cosh(\frac{E_{m}}{2kT}) \right\}.$$
 (66)

Для данного уравнения должны выполняться условия:

 При А=0 (без учета сверхтонкого взаимодействия) получается уравнение (46).

2) При б
$$\to 0$$
 получаем $1 = \frac{g_{\parallel} \mu_B \lambda}{4kT_C}$:
 $\langle S_z \rangle = \frac{\sum_m (e^{(a+A_m)/2kT} - e^{-(a+A_m)/2kT})}{2\sum_m (e^{(a+A_m)/2kT} + e^{-(a+A_m)/2kT})},$
(67)

$$\left\langle S_{z}\right\rangle = \frac{\sum_{m} \sinh(\frac{a+A_{m}}{2kT})}{2\sum_{m} \cosh(\frac{a+A_{m}}{2kT})}.$$
(68)

Также разложив в ряд по малым значениям аргумента *a*, получаем:

$$\left\langle S_{z}\right\rangle = \frac{\sum_{m} (\sinh\frac{A_{m}}{2kT} + \frac{a}{2kT}\cosh\frac{A_{m}}{2kT})}{2\sum_{m} (\cosh\frac{A_{m}}{2kT} + \frac{a}{2kT}\sinh\frac{A_{m}}{2kT})}.$$
(69)

Приведя подобные члены, и устремляя $A_m \rightarrow 0$, получаем:

$$\langle S_z \rangle = \langle S_z \rangle \frac{g_{\parallel} \mu_B \lambda}{2kT_C} \frac{1}{2}.$$
 (70)

Результаты расчета температуры перехода в магнитоупорядоченное состояние показаны на рисунке 29, кривая 2. Результаты расчетов хорошо согласуются с расчетами приведенными в работах [93, 94].

В работе [95] наблюдали расщепление основного дублета ионов гольмия в зависимости от температуры в ферромагнитном состоянии (рисунок 30). Результаты расчетов расщепления дублета в приближении молекулярного поля $\Delta(T) = g_{\parallel}\mu_B\lambda < S_z > и$ данные измерений можно согласовать, если ввести зависящую от температуры "постоянную" молекулярного поля при температурах ниже T_C =1.53 K

$$\lambda(T) = \lambda(T_C) + (1 - \frac{T}{T_C})^{1/3} (\lambda(0) - \lambda(T_C)).$$
(71)

Здесь $\lambda(T_C)$ определяется соотношением (70), и $\lambda(0) = 2\Delta(T=0) / g_{\parallel}\mu_B$. Кривая 3 на рисунке 29 соответствует расчету с учетом изменения константы молекулярного поля с температурой.

Рисунок 30. Величина относительного расщепления Δ/Δ_0 основного дублета вследствие ферромагнитного упорядочения в зависимости от приведенной температуры T/T_c . Открытые кружочки - для образца с размагничивающим фактором $\approx 4\pi$, точки - для образца с размагничивающим фактором ≈ 0 . Сплошная кривая показывает поведение расщепления в виде $\frac{\Delta}{\Delta_0} = \tanh \frac{\Delta/\Delta_0}{T/T_c}$, с $\Delta_0 = \Delta(T=0) = 2.6 \text{ см}^{-1}$, $T_c = 1.52 \text{ K}$ [95].

Как видно на рисунке 29, результаты расчета хорошо согласуются с экспериментальными данными.

Выводы

Впервые измерены полевые и температурные зависимости намагниченности монокристалла LiHoF₄ при различных ориентациях магнитного поля относительно кристаллографических осей решетки.

Из анализа полученных данных и выполненных расчетов намагниченности с учетом электрон-деформационного взаимодействия определены параметры кристаллического поля в монокристалле LiHoF₄ и параметры электрондеформационного взаимодействия.

Представлено самосогласованное описание ранее опубликованных в литературе, полевых зависимостей магнитострикции в различных направлениях приложенного магнитного поля и кривой фазового равновесия в монокристалле LiHoF₄. В сравнении с расчетами, приведенными в литературе [48], показана необходимость учета влияния поперечного магнитного поля на g_{\parallel} - фактор основного состояния и изменения постоянной молекулярного поля в зависимости от температуры, получено удовлетворительное описание экспериментальных данных в рамках предложенной самосогласованной модели.

Глава 6. Магнитные и магнитоупругие свойства монокристалла LiDyF4

6.1 Намагниченность монокристалла LiDyF₄

Монокристалл LiDyF₄ - это дипольный XY-антиферромагнетик с магнитными моментами ионов Dy³⁺ направленными перпендикулярно оси *с* кристаллической решетки (T_N =0.62 K) [1]. Анализ магнитного дипольного и обменного взаимодействий между ионами Dy³⁺ и магнитной структуры был проведен на основе измерений низкотемпературной теплоемкости в [42]. Также ранее были исследованы эффекты, обусловленные пересечением уровней энергии иона Dy³⁺ в монокристалле LiDyF₄ в сильных импульсных магнитных полях [51]. В настоящей работе проведен расчет намагниченности монокристалла LiDyF₄. Магнитное дипольное взаимодействие между ионами Dy³⁺ было учтено введением локального магнитного поля

$$\boldsymbol{B}_{loc}(s) = \boldsymbol{B} + \sum_{s'} [\boldsymbol{Q}(s,s') - \frac{4\pi}{3\nu} N_d] m(s'), \qquad (72)$$

где m(s) - магнитный момент иона, относящийся к *s*-подрешетке, N_d - фактор размагничивания и Q(s,s') - соответствующие решеточные суммы. Использованные в настоящей работе параметры гамильтониана свободных ионов Dy³⁺ приведены в таблице 7. Кристаллическое поле на ионе Dy³⁺ в монокристалле LiDyF₄ в кристаллографической системе координат определяется набором из 7 параметров B_n^k (таблица 19).

Величины параметров электрон-деформационного взаимодействия, использованные в настоящей работе, приведены в таблице 20.

Параметры мультипольных взаимодействий приведены в таблице 21.

р	k	$Dy^{3+}(4f^9)^{6}H_{15/2}$					
		[51]	[1]	[20]	Данная работа		
2	0	182	170	165	160±3		
4	0	-53	-85	-88	-83±3		
6	0	1.5	-4.2	-4.4	-4.6± 0.2		
4	4	-806	-721	-980	-751±5		
4	-4	-380	-661	0	-641±5		
6	4	-654	-390	-427	-360±5		
6	-4	-272	-248	-65	-243±5		

Таблица 19. Параметры кристаллического поля B_p^{k} (см⁻¹) для иона Dy³⁺ в монокристалле LiDyF₄.

Таблица 20. Параметры взаимодействия между ионами Dy^{3+} и деформациями решетки B_g симметрии в монокристалле LiDyF₄ (см⁻¹). Эффективные параметры даны для нулевого магнитного поля и температуры *T*=4.2 К.

	p k							
	2 2	2 -2	4 2	4 -2	6 2	6 -2	66	6 -6
$\hat{B}_p^k(B_g^1)$	1997	2355	-887	1200	-135	-427	-731	-691
$B_{effp}^{k}(B_{g}^{1})$	1617	3817	-1497	1766	-322	-549	-614	-1022
$\hat{B}_p^k(B_g^2)$	4114	-1144	-1120	1652	-528	-375	-841	-878
$B_{effp}^{\ \ k}(B_g^2)$	4614	-4406	337	168	-126	-4	-997	-98

j	1	2	3	4	5	6	7	8
i								
1	-72	-54.8	48.49	-54.8	10.18	26.5	22.5	29.96
2		62.98	-17.8	10.88	-7.13	3.516	16.07	-6.56
3			-2.0	4.572	-3.15	-0.48	-13.6	-4.88
4				-28.6	-1.77	4.771	14.09	1.137
5					-1.94	-1.16	-4.15	-1.7
6						-1.93	-5.53	-6.8
7							-6.56	-9.05
8								-6.29

Таблица 21. Параметры мультипольного взаимодействия $\lambda_{ij} = \lambda_{ji}$ (cm⁻¹) в кристалле LiDyF₄.

Представленные ниже результаты получены с использованием численной диагонализации гамильтониана ионов Dy^{3+} в полном базисе состояний электронной конфигурации 4f⁹ (число состояний равно 2002). Гамильтониан свободного иона записан в стандартном виде с параметрами электростатического, спин-орбитального и межконфигурационного взаимодействий, взятыми из работы [23].

Рассчитанное поведение намагниченности во внешнем магнитном поле, вращающемся вокруг произвольной оси (направление оси вращения определялось углом θ между осью вращения и кристаллографической осью *c* и углом *a* между проекцией оси вращения на плоскость *ab* кристалла и осью *a*) показано на рисунке 31. Видно, что даже небольшое отклонение внешнего магнитного поля от кристаллографических осей кристалла приводит к существенным искажениям угловой зависимости намагниченности в базисной плоскости *ab*-решетки.

Рисунок 31. Рассчитанные угловые зависимости намагниченности монокристалла LiDyF₄ при температуре *T*=4.2 К во внешнем магнитном поле, приложенном в различных плоскостях (*B*=2 T): $1 - \theta = 0$, $\alpha = 0$; $2 - \theta = 5^{\circ}$, $\alpha = 30^{\circ}$; $3 - \theta = 5^{\circ}$, $\alpha = 45^{\circ}$; $4 - \theta = 5^{\circ}$, $\alpha = 60^{\circ}$ [A-3].

Температурные магнитополевые зависимости намагниченности И монокристалла LiDyF₄ были СКВИД измерены нами на магнетометре. Экспериментальные данные хорошо описываются теоретической моделью, в рамках которой учитываются межионные мультипольные взаимодействия. Результаты расчетов намагниченности с использованием предложенного нами набора параметров кристаллического поля и с перенормированными константами связи между макро- и микро-деформациями показаны на рисунках 32-37.

Относительно небольшая коррекция параметров кристаллического поля, полученных ранее из анализа оптических спектров в разбавленном изоморфном кристалле LiYF₄:Dy [96] и трансформированных вращением системы координат относительно оси c [12], дала возможность хорошо описать измеренные полевые зависимости намагниченности в магнитном поле, параллельном оси c.

Рисунок 32. Измеренные (символы) и рассчитанные (сплошные линии) температурные (*a*) и полевые (*b*) зависимости намагниченности в LiDyF₄ для разных значений магнитного поля (\boldsymbol{B} ||с) и температуры. [A-4]

Наблюдаемое немонотонное поведение намагниченности при низких температурах с максимумом близким к 25 К и минимумом около 5 К (см. рисунок 32а) специфическим объясняется соотношением между соответствующими компонентами g-тензора основного (g_{||}=1.15) и первого Dy^{3+} ${}^{6}H_{15/2}$ возбужденного $(g_{\parallel}=5.3)$ подуровня мультиплета иона В кристаллическом поле, а также с учетом перераспределения заселенностей крамерсовских дублетов С изменением температуры. Из сопоставления вычисленных и измеренных температурных зависимостей намагниченности в поле **В**||с (см. рисунок 32) мы уточнили значения параметров кристаллического поля (см. таблицу 19). Отметим, что вычисленная энергия 18.6 см⁻¹ первого возбужденного подуровня основного мультиплета ⁶H_{15/2} заметно отличается от 14.2 см⁻¹ ионов Dy³⁺ в кристалле LiYF₄ [22]. соответствующей энергии

Определенные нами параметры кристаллического поля сравниваются с литературными данными в таблице 19.

Значительная роль электрон-деформационного взаимодействия в формировании намагниченности в концентрированных редкоземельных парамагнетиках при низких температурах становится очевидной при анализе намагниченности LiDyF₄ индуцированной магнитным полем, перпендикулярным оси *c* (рисунок 33). В этом случае, как это показано на рисунке 33*b*, с учетом только зеемановского взаимодействия мы наблюдаем сильно заниженные магнитные моменты иона Dy^{3+} в полях, превышающих 1Т.

Рисунок 33. Измеренные (символы) и рассчитанные (сплошные кривые) температурные (a) и магнитополевые (b) зависимости намагниченности в LiDyF₄ в магнитном поле, параллельном кристаллографической оси a. Пунктирная кривая показывает рассчитанную намагниченность при T=5 К без учета электрон-деформационного взаимодействия [A-4].

6.2 Магнитострикция в монокристалле LiDyF₄

Следует отметить, что мультипольное взаимодействие вносит заметную перенормировку в электрон-деформационное взаимодействие (таблица 20), и

можно ожидать сильного смягчения кристаллической решетки LiDyF₄, подобного наблюдаемому в DyVO₄ [72]. Рассчитанные температурные зависимости упругих постоянных LiDyF₄, которые определяются индуцированными деформациями B_g симметрии, показаны на рисунке 34. На самом деле, упругие постоянные значительно изменяются при понижении температуры до 10 К и в дальнейшем сохраняются неизменными при низких температурах.

Рисунок 34. Рассчитанные температурные зависимости упругих постоянных в нулевом магнитном поле. Значения соответствующих упругих постоянных монокристалла LiYF₄ показаны символами [68] [A - 4].

При низких температурах под действием магнитного поля $B \parallel [110]$ в монокристалле LiDyF₄ индуцируется гигантская магнитострикция, (измерения магнитострикции для всех образцов проведены Кротовым В.И. в лаборатории НИЛ МРС и КЭ им. С.А. Альтшулера), которая достигает величины ~ 10⁻³ в поле ~1 Т при *T*=4.2 К. Вычисленные изменения размеров кристалла $\Delta l/l = \sum_{\alpha\beta} n_{\alpha} n_{\beta} e_{\alpha\beta}$ вдоль направления внешнего магнитного поля, заданного направляющими

косинусами n_{α} , с использованием приведенных выше параметров кристаллического поля, хорошо согласуются с данными измерений (см. рисунок 35) при учете зависящих от температуры и магнитного поля вкладов в упругие постоянные, обусловленных электрон-деформационным взаимодействием.

Рисунок 35. Полевые зависимости магнитострикции в двух направлениях приложенного магнитного поля в монокристалле LiDyF₄ при T=4.2 К. Сплошные линии – теория, символы – экспериментальные данные. Пунктирная кривая соответствует теоретическому расчету без учета электрон-фононного взаимодействия [A-4].

Рассчитанная магнитострикция сильно анизотропна и достигает гигантских значений порядка 10⁻³ в магнитном поле ~1 Т при *T*=4.2 К. Рассчитанная полевая зависимость продольной магнитострикции хорошо согласуется с экспериментальными результатами (см. рисунки 35, 36).

Рисунок 36. Рассчитанные угловые зависимости магнитострикции в магнитных полях B=1 T (кривая 1) и 0.5 T (кривая 2), $B \perp [001]$, T=4.2 K [A-4].

Измеренные угловые зависимости намагниченности в базисной плоскости монокристалла LiDyF₄ во внешнем магнитном поле 2T сравниваются с результатами расчета на рисунке 37. Как видно из этого рисунка, расчет воспроизводит экспериментальные результаты очень хорошо.

В результате экспериментальных исследований обнаружена сильная анизотропия намагниченности монокристалла LiDyF₄, обусловленная в большей степени магнитоупругим, в меньшей степени электрон-фононным взаимодействием, что находится в полном согласии с рассчитанными нами угловыми зависимостями магнитострикции в базисной плоскости (рисунок 36). Интересным является то, что в некоторых направлениях приложенного магнитного поля величина магнитострикции меняет свой знак.

Рисунок. 37. Угловые зависимости намагниченности в базисной плоскости монокристалла LiDyF₄ при T=4.2 К. Сплошные линии – теория, символы – экспериментальные данные (*B*=2T). Пунктирные кривые соответствуют расчету без учета магнитоупругого взаимодействия (B=1T) и расчету без учета электрон-фононного взаимодействия (B=1T, B=2T) [A-3].

Как следует из расчетов, существенная анизотропия намагниченности при температурах, меньших 10 К, и в полях B > 0.5 Т обусловлена в основном магнитоупругим взаимодействием.

Выводы

Впервые измерены полевые и температурные зависимости намагниченности при различных ориентациях магнитного поля относительно кристаллографических осей решетки монокристалла LiDyF₄.

Обнаружена сильная анизотропия намагниченности в базисной плоскости монокристаллов LiDyF₄, обусловленная магнитоупругим взаимодействием.

Из анализа измерений и выполненных расчетов намагниченности с учетом электрон-деформационного и электрон-фононного взаимодействий определены параметры кристаллического поля в монокристалле LiDyF₄, и параметры электрон-деформационного взаимодействия.

Представлено самосогласованное описания экспериментальных данных: полевых, температурных и угловых зависимостей намагниченности монокристалла LiDyF₄, полевых зависимостей магнитострикции в различных направлениях приложенного магнитного поля относительно осей монокристалла LiDyF₄.

Магнитоупругое взаимодействие в монокристалле LiDyF₄ вносит существенный вклад в намагниченность монокристалла во внешнем магнитном поле, приложенном в базисной плоскости кристаллической решетки при низких температурах.

Заключение

В настоящей работе на основе литературных данных об уровнях энергии ионов в кристаллическом поле, о температурных зависимостях намагниченности и дифференциальной магнитной восприимчивости в сильных импульсных магнитных полях определены наборы параметров кристаллического поля для редкоземельных ионов в кристаллах LiTbF₄, LiDyF₄, LiTmF₄ и LiHoF₄. параметры кристаллического Полученные поля хорошо согласуются с параметрами, определенными ранее для изоморфных редкоземельных соединений.

Таблица 22. Параметры кристаллического поля B_p^k (см⁻¹) для ионов Ln³⁺ в монокристаллах LiLnF₄ (R=Ho, Dy, Tb, Tm), найденные в настоящей работе.

B_p^{k}	LiTbF ₄	LiDyF ₄	LiHoF ₄	LiTmF ₄
B_2^{0}	200	160	200.35	184
B_4^{0}	-100.5	-83	-84.25	-90
B_{6}^{0}	-2	-4.6	-3.5	-4.06
B_4^4	-694	-751	-667.24	-669
B_4^{-4}	-829	-641	-578.63	-638
B_{6}^{4}	-435	-360	-364.04	-328
B_{6}^{-4}	-283	-243	-222.3	-294

Показано, что магнитоупругое взаимодействие вносит большой вклад в намагниченность монокристаллов LiDyF₄ и LiTmF₄ в сильных магнитных полях.

Доказано, что для описания магнитных свойств редкоземельных двойных фторидов необходимо учитывать взаимодействие между редкоземельными ионами через поле фононов. Предложенное самосогласованное описание магнитных характеристик редкоземельных соединений апробировано анализом полученных автором данных измерений температурных и полевых зависимостей намагниченности кристаллов LiDyF₄, LiHoF₄, LiTbF₄ и литературных данных для кристалла LiTmF₄.

По результатам измеренной зависимости спектра ЯМР 19 F в монокристалле LiTbF₄ от ориентации внешнего магнитного поля получены значения констант суперсверхтонкого взаимодействия между ядрами фтора и ионами тербия (таблица 15).

Для монокристалов LiHoF₄ и LiTbF₄ оценены параметры молекулярного поля и обменного взаимодействия.

Для монокристаллов LiLnF₄ (R=Ho, Dy, Tb, Tm) получены значения параметров связи с деформациями (таблицы 8, 18, 20) и параметры мультипольного взаимодействия (таблицы 10, 13, 21).

В рамках используемого самосогласованного рассмотрения описаны полученные работе данной И литературные экспериментальные данные полевых, В температурных И угловых зависимостей намагниченности различных В направлениях приложенного магнитного поля, магнитострикции, уровней энергии редкоземельных ионов LiLnF₄ (R=Ho, Dy, Tb, Tm), кривой фазового равновесия монокристалла LiHoF₄.

В заключение автор хотел бы поблагодарить научного руководителя профессора М.С. Тагирова - за постановку задачи, постоянное внимание и поддержку,

научного консультанта профессора Б.З. Малкина – за обсуждение экспериментальных результатов и помощь в расчетах,

А.В. Клочкова и В.В. Кузьмина - за помощь в проведении экспериментов, обсуждение экспериментальных данных и всестороннюю поддержку,

А.В. Егорова за помощь в проведении измерений стационарного ЯМР ¹⁹F,

С.Л. Кораблеву за выращенные монокристаллы,

профессора Н.Сузуки (Япония) за помощь в проведении экспериментов на СКВИД-магнетометре, поддержку и внимание,

И.Р. Мухамедшина – за помощь в проведении экспериментов на СКВИДмагнетометре,

а также всех сотрудников кафедры КЭ и РС и лаборатории МРС за поддержку, участие и помощь во время проведения экспериментов и работы над диссертацией.

Публикации автора по теме диссертации

Статьи в ведущих научных журналах, входящих в перечень ВАК:

<u>А-1.</u> Романова, И.В. Магнитные свойства изинговского дипольного ферромагнетика LiTbF₄ / И.В. Романова, Б.З. Малкин, И.Р. Мухамедшин, Х. Сузуки, М.С., Тагиров // ФТТ. – 2002. – Т. 44. – С. 1475-1479.

<u>A-2.</u> Romanova, I.V. ¹⁹F NMR study of LiTbF₄ single crystals / I.V. Romanova, A.V. Egorov, S.L. Korableva, B.Z. Malkin and M.S. Tagirov. // Journal of Physics: Conference Series.-2011. -V. 324 -P. 012034

<u>A-3.</u> Romanova, I.V. Studies of magnetization of lithium-rare earth tetra-fluoride single crystals / I.V. Romanova, A.V. Klochkov S.L. Korableva , V.V. Kuzmin , B.Z. Malkin, I.R. Mukhamedshin , H. Suzuki, M.S. Tagirov// Magnetic Resonance in Solids.E.J. - 2012. - V. 14. – N. 2. - P.12203.

<u>A-4.</u> Romanova, I.V. Magnetic and magnetoelastic properties of $LiDyF_4$ single crystals / I. V. Romanova, S. L. Korableva, V. I. Krotov, B. Z. Malkin, I. R. Mukhamedshin, H. Suzuki and M. S. Tagirov // J. Phys.: Conf. Ser. – 2013. - V. 478. – P. 012026.

<u>А-5</u>. Романова, И.В. Мультипольное взаимодействие в монокристалле LiTmF₄ / И. В. Романова, Б. З. Малкин, М. С. Тагиров // Оптика и спектроскопия. – 2014. – Т.116. – N.6. – С.92-100.

Статьи в других научных журналах:

<u>A-6.</u> Romanova, I.V. Magnetoelastic effects and magnetization in LiDyF₄ and LiHoF₄ single crystals // I.V. Romanova, R.Yu. Abdulsabirov, S.L. Korableva, B.Z. Malkin, I.R. Mukhamedshin, H. Suzuki, M.S. Tagirov // Magn. Resonance in Solids. EJ. -2006. - V. 8. - P. 1-5.

Тезисы докладов на научных конференциях:

[К-1]. Абдулсабиров, Р.Ю Магнитные свойства изинговских дипольных ферромагнетиков LiLnF₄ (Ln=Tb, Ho) при низких температурах / Р.Ю. Абдулсабиров, А.Г. Володин, С.Л. Кораблева, И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров, Д.А. Таюрский, И.В. Шустова // Тезисы докладов 32 Совещания по Физике Низких Температур, Секция LT: «Низкотемпературная Физика Твердого тела» (Казань, 3-6 октября 2000 года): Казань, Изд. «Хэтер». - 2000. - С. 132-133.

[К-2]. Абдулсабиров, Р.Ю Магнитные свойства изинговских дипольных антиферромагнетиков LiLnF₄ (Ln=Dy, Er) при температурах T>T_N / Р.Ю. Абдулсабиров, С.Л. Кораблева, И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров, Д.А. Таюрский, И.В. Шустова // Тезисы докладов 32 Совещания по Физике Низких Температур, Секция LT: «Низкотемпературная Физика Твердого тела» (Казань, 3-6 октября 2000 года): Казань, Изд. «Хэтер». - 2000. - С. 130-131.

[K-3]. Шустова, И.В. Магнитные свойства монокристаллов LiLnF₄ (Ln=Tb, Ho, Dy, Er) / И.В. Шустова // Тезисы докладов I Научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета «Материалы и технологии XXI века» (Казань, 20-21 октября 2000 года): Казань, Изд. центр КГУ. – 2000. - С. 87.

[K-4]. Abdulsabirov R.Yu. Magnetic properties of Ising-like dipolar ferromagnets LiTbF₄, LiHoF₄ and antiferromagnets LiErF₄ and LiDyF₄ // R.Yu. Abdulsabirov, I.V. Choustova, S.L. Korableva, B.Z. Malkin, I.R. Mukhamedshin, H. Suzuki, M.S. Tagirov / Abstracts of XI-th Feofilov symposium on spectroscory of crystals activated by rare earth and transition metal ions (Kazan, September 24-28, 2001). - Казань: Изд. «РегентЪ». – 2001. - Р. 165.

[К-5]. Романова, И.В. Межионные магнитные взаимодействия и параметры кристаллического поля в тетрафториде тербия / И.В. Романова, Б.З. Малкин,

И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров / Тезисы докладов II научной конференции молодых ученых, аспирантов и студентов научнообразовательного центра Казанского государственного университета «Материалы и технологии XXI века» (Казань, 5-6 декабря 2001 года). – Казань: Изд. центр КГУ. - 2001. - С. 78.

[К-6]. Романова, И.В. Магнитные свойства тетрафторида гольмия / И.В. Романова, Б.З. Малкин, И.Р. Мухамедшин, Х. Сузуки, М.С Тагиров / Тезисы докладов VI Научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета «Материалы и технологии XXI века» (Казань, 28 апреля 2006 года). – Казань: Изд. центр КГУ. – 2006. - С. 97.

[К-7]. Романова, И.В Намагниченность шеелитов LiHoF₄ и LiDyF₄ / И.В. Романова, Р.Ю. Абдулсабиров, С.Л. Кораблева, Б.З. Малкин, И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров / Тезисы докладов 34 Совещания по Физике Низких Температур (Сочи, 25-30 сентября 2006 года). - Ростов н/Д: Изд. РГПУ. - 2006. - Т. 1. - С. 34-35.

[K-8]. Abdulsabirov, R.Yu. Magnetoelastic effects and magnetization in LiDyF₄ and LiHoF₄ single crystals / R.Yu. Abdulsabirov, I.V. Romanova, S.L. Korableva, B.Z. Malkin, I.R. Mukhamedshin, H. Suzuki, M.S. Tagirov // Program proceedings of X International Youth Scientific School «Actual problems of magnetic resonance and its application», (Kazan, 31 October – 3 November, 2006). - Казань: Изд. центр КГУ. – 2006. - Р. 50-54.

[K-9] Romanova, I.V. Magnetic properties of double rare-earth fluorides $LiDyF_4$ and $LiHoF_4$ / I.V. Romanova, R.Yu. Abdulsabirov, S.L. Korableva, B.Z. Malkin, I.R. Mukhamedshin, H. Suzuki, M.S. Tagirov // - Program and abstract of International symposium on quantum fluids and solids, Kazan. - 1-6 August 2007. - P. 199.

[K-10] Romanova, I.V. Study of magnetization and NMR of ¹⁹F in double rareearth fluorides LiDyF₄, LiHoF₄, LiTbF₄ / I.V. Romanova, R.Y. Abdulsabirov, S.L. Korableva, A.V. Egorov, A.V. Klochkov, B.Z. Malkin, I.R. Mukhamedshin,
H. Suzuki, M.S. Tagirov // Euromar 2008 Magnetic Resonance for the Future, Abstract Book. - 6-12 July, St. Peterburg 2008. – P. 241.

[K-11] Klochkov, A. Magnetization and NMR of ¹⁹F in Double Rare-Earth Fluorides LiDyF₄, LiHoF₄, LiTbF₄ / A. Klochkov, R. Abdulsabirov, S. Korableva, A. Egorov, V. Kuzmin, B. Malkin, I. Mukhamedshin, I. Romanova, H. Suzuki, M. Tagirov // 25th International Conference on Low Temperature Physics, August 6 - 13, 2008, Amsterdam, The Netherlands, Official Conference Book. - P.108.

[K-12].Romanova, I.V. ¹⁹F NMR study of LiTbF₄ single crystals at the room temperature / I.V. Romanova, R.Yu. Abdulsabirov, A.V. Egorov, S.L. Korableva, M.S. Tagirov. // International conference Resonances in condenced matter ALT100, 21-25 June, 2011, Kazan, Book of abstracts. - P. 101

[K-13]. Romanova, I.V. ¹⁹F NMR and local fields in double rare-earth fluoride LiTbF₄ / I.V. Romanova, A.V. Egorov, S.L. Korableva, M.S. Tagirov. // International conference Spin physics, spin chemistry and spin technology, 1-5 November, 2011, Kazan, Abstracts. - P. 213

[К-14]. Романова, И.В. Гигантская магнитострикция и магнитоупругое взаимодействие в монокристалле LiDyF₄ / И.В. Романова, А.В. Клочков, С.Л. Кораблева, В.И. Кротов, В.В. Кузьмин, Б.З. Малкин, И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров, А.И. Халилов // Тезисы докладов XI научной конференции молодых ученых, аспирантов И студентов научноцентра Казанского образовательного государственного университета «Материалы и технологии XXI века» (Казань, 17 мая 2012 года). - Казань, Изд. центр КФУ. - 2012. - С. 95.

[K-15]. Романова, И.В. Магнитные и спектральные свойства монокристалла LiDyF₄ / И.В. Романова, А.В. Клочков, С.Л. Кораблева, В.И. Кротов, В.В. Кузьмин, Б.З. Малкин, И.Р. Мухамедшин, Х. Сузуки, М.С. Тагиров // Тезисы докладов, XXXVI Совещание по физике низких температур (Санкт-Петербург, 2-6 июля 2012). - С. 122-123.

[K-16]. Romanova, I.V. Magnetic and magnetoelastic properties of lithium-rareearth tetra-fluoride single crystals / I.V. Romanova, A.V. Klochkov, S.L. Korableva, V.V. Kuzmin, B.Z. Malkin, I.R. Mukhamedshin, H. Suzuki, M.S. Tagirov // Proceedings of the XV International Youth Scientific School /Actual problems of magnetic resonance and its application, 22 - 26 October 2012, Kazan. Edited by professor M.S. Tagirov (Kazan Federal University) and professor V.A. Zhikharev (Kazan State Technological University). - Kazan: Kazan Federal (Volga Region) University. - 2012. – P. 195.

[K-17].Romanova, I.V. Multipole interactions between Tm^{3+} ions in LiTmF₄ / I.V. Romanova, B.Z. Malkin, M.S. Tagirov // Book of Abstracts of XV Feofilov symposium on spectroscopy of crystals. - Kazan, Russia.-September 16-20, 2013.- P. 184.

[K-18]. Romanova, I.V. Impact of multipole interactions between Tm^{3+} ions on spectral and magnetic properties of LiTmF₄ single crystals / I.V. Romanova, B.Z. Malkin, M.S. Tagirov // Actual Problems of magnetic resonance and its application, XVI International Youth Scientific School, Proceedings. - Kazan. - 21 – 25 October 2013. - p.73-76.

Список цитируемой литературы:

- Aminov, L.K. Magnetic properties of nonmetallic lanthanide compounds. Handbook on the Physics and Chemistry of the Rare-Earths / L.K. Aminov, B.Z. Malkin, M.A. Teplov; ed. K.A. Gschneidner and LeRoy Eyring. - North-Holland.: Amsterdam, 1996. - № 22. – P. 295.
- Klochkov, A.V. Magnetism and structural phase transitions in LiTmF4 powders / A.V. Klochkov, V.V. Naletov, I.R. Mukhamedshin, M.S. Tagirov, D.A. Tayurskii, H. Suzuki // JETP Lett. -1997. -V.66. - I.4. - P. 266-270.
- Hansen, P.E. / Transferred hyperfine interaction at 295 K between the rare-earth ions and the fluorine and lithium nuclei in lithium rare-earth fluorides / P.E. Hansen and R. Nevald // Phys. Rev. B. – 1977. – V.16. – P.146.
- Vasyliev, V. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF₄(RE = Tb, Dy, Ho, Er and Yb), PrF₃ and CeF₃ / V. Vasyliev, E.G. Villora, M. Nakamura, Y. Sugahara, K. Shimamura // Optics Express. 2012. V.20. 14460.
- Kjaer, K. A neutron scattering study of the dilute dipolar-coupled ferromagnets LiTb_{0.3}Y_{0.7}F₄ and LiHo_{0.3}Y_{0.7}F₄ structure, magnetisation and critical scattering / K. Kjaer, J. Als-Nielsen, I. Laursen, F. K. Larsen // J. Phys.:Condens. Matter. – 1989. – V.1. – 5743-5757.
- Garcia, E. Structure of the laser host material LiYF₄ / E. Garcia, R.R. Ryan // Acta Cryst. C -1993. – V.49. – P. 2053-2054.
- Chicklis, E.P. Stimulated emission in multiply doped Ho³⁺:YLF and YAG A comparison / E.P. Chicklis, C.S. Naiman, R.C. Folweiler, J. Doherty // IEEE J. Quantum Electron. 1972. V.8. P.225-230.
- Watts, R.K. Infrared to green conversion in LiYF₄:Yb,Ho / R.K. Watts and W.
 C. Nolton // Solid State Commun. 1971. V.9. P.137-139.
- Bowman, S.R. Blue dysprosium laser / S.R. Bowman, N.J. Condon, S.P. O'Connor // United States: Patent Application Publication. - 2011. - № US 2011/0206069 A1.

- 10.Rosenbaum, T.F. Dipolar ferromagnets and glasses (invited) / T.F. Rosenbaum,
 W. Wu, B. Ellman, J. Yang, G. Aeppli, D.H. Reich // J. Appl. Phys. 1991. –
 V.70. P.5946.
- 11.Al'tshuler, S.A. Giant magnetostriction in the Van-Vleck paramagnet LiTmF₄ / S.A. Al'tshuler, V.I. Krotov, B.Z. Malkin // Pis'ma ZhETF. 1980. V.32. P.232-235 (Sov. Phys. JETP Lett. 1980. V32. P.214-216).
- Bumagina, L.A. Magnetostriction in ionic rare earth paramagnets / L.A. Bumagina, V.I. Krotov, B.Z. Malkin, A.Kh. Khazanov // Sov. Phys. JETP. 1981. V.53. P.792 797.
- Абдулсабиров, Р.Ю. Магнитоупругие аномалии теплового расширения кристаллов LiRF₄, R=Ho, Tm, Lu / Р.Ю. Абдулсабиров, З.А. Казей, С.Л. Кораблева, Д.Н. Терпиловский // ФТТ. – 1993. - №35. – С.1876-1880.
- 14. Жданов, Р.Ш. Магнитоупругие взаимодействия в кристаллах LiTRF₄: дис.
 ... канд. физ.-мат. наук: 01.04.07/Жданов Рустем Шифович Казань, 1985. –
 160 с.
- 15.Als-Nielsen, J. Spontaneous magnetization in the dipolar Ising ferromagnet LiTbF₄ / J. Als-Nielsen, L.M. Holmes, F.K. Larsen and H.J. Guggenheim // Phys. Rev. B. – 1975. – V.12. – P.191.
- 16. Altshuler, S.A. Electron paramagnetic resonance / S.A. Altshuler, B.M. Kozyrev.
 M.:Nauka, 1972.
- Christensen, H.P. Spectroscopic analysis of lithium terbium fluoride / H.P. Christensen // Phys. Rev. B. 1978. V.17. N.10. P.4060-4068.
- Christensen, H.P. Spectroscopic analysis of LiHoF₄ and LiErF₄ / H.P. Christensen // Phys. Rev. B. 1979. V.19. N.12. P.6564-6572.
- Christensen, H.P. Spectroscopic analysis of LiTmF₄ / H.P. Christensen// Phys. Rev. B. – 1979. – V.19. – N.12 – P.6573-6582.
- 20. Купчиков, А.К. Динамика решетки и электрон-фононное взаимодействие в кристалле LiTmF₄ / А.К. Купчиков, Б.З. Малкин, Д.А. Рзаев, А.И. Рыскин // ФТТ. – 1982. – Т.24. – С.2373-2380.

- 21.Salaun, S. Lattice dynamics of fluoride scheelites: I. Raman and infrared study of LiYF₄ and LiLnF₄ (Ln=Ho, Er, Tm and Yb) / S. Salaun, M.T. Fornoni, A. Bulou, M. Rousseau, P. Simon, J. Y. Gesland // Phys.:Condens. Matter J. 1997. V.9. P.6941-6957.
- 22. Давыдова, М.П. Штарковская структура спектра иона Dy³⁺ в кристалле LiYF₄ / М.П. Давыдова, С.Б. Зданович, Б.Н. Казаков, А.Л. Столов, С.Л. Кораблева // Оптика и спектр. 1977. Т.42. С. 577-578.
- 23.Battison, J.E. Ferromagnetism in lithium holmium fluoride-LiHoF₄. II. Optical and spectroscopic measurements / J. E. Battison, A. Kasten, M. J. M. Leask, J. B. Lowry, B. M. Wanklyn, J. Phys. C: Solid State Phys. – 1975. – V.8. – P.4089-4095.
- 24. Morrison, C.A. Handbook on the Physics and Chemistry of the Rare Earths / C.A. Morrison, R.P. Leavitt; ed. K.A. Gschneidner and LeRoy Eyring. North-Holland.: Amsterdam, 1982. № 46.
- 25. Аминов, Л.К. Динамика и кинетика электронных и спиновых возбуждений в парамагнитных кристаллах / Л.К. Аминов, Б.З. Малкин. – Казань: КГУ, 2008.
- 26.Beauvillain, P. Determination of crystal field parameters of LiRF₄ (R=Tb,Ho,Er) by high temperature susceptibility measurements / P. Beauvillain, J.P. Renard // J. Mag. Mag. Mater. 1980. V.15-18. P.31-32.
- 27.Hansen, P.E. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF₄ and LiHoF₄ and crystal-field parameters at the rare-earth and Li sites / P.E. Hansen, T. Johanson, R. Nevald // Phys Rev B. 1975. V.12. P.5315.
- 28.Chakraborty, P.B. Theory of the magnetic phase diagram of LiHoF₄ / P.B. Chakraborty, P. Henelius, H. Kjonsberg, A.W. Sandvik, S.M. Girvin // Phys. Rev. B. 2004. V.70. P.144411.
- 29.Ronnow, H.M. Magnetic excitations near the quantum phase transition in the Ising ferromagnet LiHoF₄ / H.M. Ronnow, J. Jensen, R. Parthasarathy, G. Aeppli, T.F. Rosenbaum, D.F. McMorrow, C. Kraemer // Phys. Rev. B. – 2007. – V.75. –

P.054426.

- 30. Nevald, R. The basal plane anisotropy in lithium rare earth fluorides / R. Nevald, P.E. Hansen // Physica B+C. 1977. V.86-88. P.1443-1444.
- 31.Magarino, J. EPR experiments in LiTbF₄, LiHoF₄, and LiErF₄ at submillimeter frequencies / J. Magarino, J. Tuchendler, P. Beauvillain and I. Laursen // Phys. Rev. B. – 1980. – V.21. – P.18.
- 32.De Groot, P. EPR in LiTbF₄ using an HCN laser / P. De Groot, F. Leempoels, J. Witters, F. Herlach // Solid State Commun. 1981. V.37. I.8. P.681-683.
- 33.Janssen, P. FIR paramagnetic resonances in LiHoF₄ / P. Janssen, P. De Groot, L. Van-Bockstal // J. Mag. Mag. Mater. 1983. V.31-34. P.687-688.
- 34.Holmes, L.M. Ferromagnetism in LiTbF₄ / L.M. Holmes, T. Johansson // Solid State Commun. 1973. V.12. I.10. P.993-997.
- 35.Cooke, A.H. Ferromagnetism in lithium holmium fluoride-LiHoF₄. I. Magnetic measurements / A. H. Cooke, D. A. Jones, J. F. A Silva, M. R. Wells // J. Phys. C: Solid State Phys. 1975. V.8. P.4083-4088.
- 36.Ahlers, G. Logarithmic Corrections to the Landau Specific Heat near the Curie Temperature of the Dipolar Ising Ferromagnet LiTbF₄ / G.Ahlers, A. Kornblit and H.J. Guggenheim // Phys. Rev. Lett. – 1975. – V.34. – P.1227.
- 37.Griffin, J.A. Spontaneous Magnetization at Marginal Dimensionality in LiTbF₄ / J.A. Griffin, J.D. Litster, A. Linz // Phys. Rev. Lett. 1977. V.38. P.251.
- Griffin, J.A. Optical study of the spontaneous magnetization at marginal dimensionality / J.A. Griffin, J.D. Litster // Phys. Rev. B. – 1979. – V.19. – P.3676.
- Frowein, R. Logarithmic Corrections in the Magnetic Equation of State for LiTbF₄ / R. Frowein, J. Kotzler and W. Assmus // Phys. Rev. Lett. – 1979. – V.42. – P.739.
- 40.Frowein, J. Crossover to mean-field behavior at marginal dimensionality / Frowein, J. Kotzler, B. Schaub and H. Schuster // Phys. Rev. B. – 1982. – V.25. – P.4905.

- 41. Beauvillain, P. Critical behavior of the magnetic susceptibility of the uniaxial ferromagnet LiHoF₄ / P. Beauvillain, J. P. Renard, I. Laursen, P.J. Walker // Phys. Rev. B. 1978. V.18. P.3360-3368.
- 42.Beauvillain, P. Critical behaviour of the uniaxial dipolar ferromagnets LiTbF₄ and LiHoF₄: Effect of dilution by Y^{3+} / P. Beauvillain, C. Chappert, J.P. Renard, J.A. Griffin, I. Laursen // J. Mag. Mag. Mat. 1980. V.15-18. P.421-423.
- 43.Beauvillain, P. Critical behaviour of the magnetic susceptibility at marginal dimensionality in LiTbF₄ / P. Beauvillain, C. Chappert, I. Laursen / J. Phys. C. – 1980. – V.13. – N.8. – P.1481.
- 44. Holmes, L.M. Dipolar and nondipolar interactions in LiTbF₄ / L.M. Holmes, J. Als-Nielsen, H.J. Guggenheim // Phys. Rew B. 1975. V.12. P.180.
- 45.Mennenga, G. A comparative study of the magnetic ordering specific heats of four s = 1/2 dipolar magnets: LiRF₄ (R = Er, Dy, Ho, Tb) / G. Mennenga, L.J. de Jongh, W.J. Huiskamp, I. Laursen // J. Mag. Mag. Mater. 1984. V.44. P.48-58.
- 46.Mennenga, G. Field dependent specific heat study of the dipolar Ising ferromagnet LiHoF₄ / G. Mennenga, L.J. de Jongh, W.J. Huiskamp // J. Mag. Mag. Mater. – 1984. – V.44. – P.59-76.
- 47. Biltmo, A. The ferromagnetic transition and domain structure in LiHoF₄ / A. Biltmo, P. Henelius // EPL (Europhysics Letters). 2009. V.87. N.2. P.27007.
- 48. Bitko, D. Quantum Critical Behavior for a Model Magnet / D. Bitko, T.F. Rosenbaum, G. Aeppli // Phys. Rev. Lett. 1996. V.77. N.5 P.940.
- 49. Tabei, S.M.A. Perturbative quantum Monte Carlo study of LiHoF₄ in a transverse magnetic field / S.M.A. Tabei, M.G.P. Gingras, Y.-J. Kao, T. Yavors'kii // Phys. Rev. B. 2008. V.78. P.184408.

- 50. Shakurov, G.S. Direct measurements of anticrossings of the electron-nuclear energy levels in LiYF₄:Ho³⁺ with the submillimeter EPR spectroscopy / G.S. Shakurov, M.V. Vanyunin, B.Z. Malkin, B. Barbara, R.Yu. Abdulsabirov, S.L. Korableva // Appl. Magn. Res. – 2005. – V.28. – P.251-265.
- 51. Казей, З.А. Эффекты кроссовера в шеелите DyLiF₄ / З.А. Казей, В.В. Снегирев, Р.И. Чаниева, Р.Ю. Абдулсабиров, С.Л. Кораблева // ФТТ. 2006. Т.48. С.682-690.
- Al'tshuler, S.A. Magnetoelastic interactions in rare-earth paramagnets LiLnF₄ / S.A. Al'tshuler, B.Z. Malkin, M.A. Teplov, D.N. Terpilovskii // Sov. Sci. Rev.: Sect. A; ed. by I. M. Khalatnikov. Harwood Acad. Publishers. 1985. V.6, P.61-159.
- 53. Кротов, В.И. Магнитострикция в упорядоченной и неупорядоченной фазах изинговского ферромагнетика LiTbF₄ // В.И. Кротов, Б.З. Малкин, А.А. Миттельман // ФТТ. – 1982. – Т.24. – №.2. – С.542-546.
- 54. Володин, А.Г. Аномалии упругости кристаллов LiHoF₄ и LiTbF₄ при сверхнизких температурах / А.Г. Володин, Р.Ш. Жданов, С.Л. Кораблева, М.С. Тагиров, М.А. Теплов, Д.Н. Терпиловский // Тезисы докладов 23-е Всесоюзного совещания по физике низких температур, Таллин, 23-25 окт. -1984. - Ч.3. – С. 8.
- 55. Beauvillain, P. Low-temperature magnetic susceptibility of LiErF₄: evidence of antiferromagnetic ordering at 0.38K / P. Beauvillain, J.P. Renard, P.E. Hansen // J.Phys. C. :Solid State Physics. 1977. V.10. N24. L709.
- 56. Винокуров, А.В. Параметры электрон-деформационного взаимодействия в кристалле LiYF₄ : Er³⁺ // А.В. Винокуров, С.Л. Кораблева, Б.З. Малкин, А.И. Поминов, А.Л. Столов // ФТТ. – 1988. – Т.30. – В.3. – С.801.
- 57. Bertaina, S. Cross-relaxation and phonon bottleneck effects on magnetization dynamics in LiYF₄:Ho³⁺ / Bertaina S., Barbara B., Giraud R., Malkin B. Z., Vanuynin M. V., Pominov A. I., Stolov A. L., Tkachuk A. M. // Phys. Rev. B. 2006. V.74. P.184421.

- 58. Казей, З.А. Магнитоупругий вклад в тепловое расширение редкоземельных шеелитов RLiF₄ (R=Tb-Yb) / З.А. Казей, О.А. Шишкина, Р.И. Чаниева, Р.Ю. Абдулсабиров, С.Л. Кораблева // ЖЭТФ. – 2003. – Т.124. – С.310-321.
- 59. Abubakirov, D.I. Study of anisotropic magnetic properties of LiTmF₄ in (001) plane by enhanced ¹⁶⁹Tm NMR and magnetization measurements / D.I. Abubakirov, V.V. Kuzmin, H. Suzuki, M.S. Tagirov, D.A. Tayurskii // Journal of Physics: Conference Series. 2006. V.51. P.135–138.
- 60.Abubakirov, D.I. Anisotropic magnetization of the Van Vleck paramagnet LiTmF₄ at low temperatures and high magnetic fields / D.I. Abubakirov, K. Matsumoto, H. Suzuki, M.S. Tagirov // J. Phys.: Condens. Matter. – 2008. – V.20. – P.395223.
- 61. Кораблева, С.Л. Спонтанные и вынужденные магнитополевые эффекты в спектре электрон-фононных возбуждений изинговского ферромагнетика LiTbF₄ / С.Л. Кораблева, А.К. Купчиков, Б.З. Малкин, А.И. Рыскин // ФТТ. – 1984. – Т.26. – С.3700-3702.
- 62. Dorfler, W. Investigation of the 4*f*-electron-phonon-coupling in the ferromagnet LiTbF₄ by inelastic scattering of light / W. Dorfler, H.D. Hochheimer, G. Schaack // Z. Phys. B: Condensed Matter. 1983. V.51. I.2. P.153-163.
- 63. Dorfler, W. 4*f*-electron-phonon coupling and lattice dynamics in the ferromagnet LiTbF₄ / W. Dorfler, G. Schaack // Z. Phys. B: Condensed Matter. 1985. V.59. I.3. 283-291.
- 64. Купчиков, А.К. Исследования электрон-фононного взаимодействия в кристаллах LiRF4 (R=Tb, Yb) методом комбинационного рассеяния света / А.К. Купчиков, Б.З. Малкин, А.Л. Натадзе, А.И. Рыскин // ФТТ. – 1987. – V.29. – N.11. - C.3335-3344.
- 65. Купчиков, А.К. Спектроскопия электрон-фононных возбуждений в редкоземельных кристаллах: сборник: Спектроскопия кристаллов /

Купчиков А.К., Малкин Б.З., Натадзе А.Л., Рыскин А.И. – Ленинград: Наука, 1989. - с.85-109.

- 66.Sushil K. M. Low-temperature ordered states of lithium rare-earth tetrafluorides (LiRF₄) / Sushil K. Misra, Joshua Felsteiner // Phys. Rev. B. 1977. V.15. P.4309-4312.
- Malkin B. Z., Crystal field and electron-phonon interaction in rare-earth ionic paramagnets. In: Spectroscopy of solids containing rare-earth ions, ed. by A.A.Kaplyanskii and R.M.Macfarlane / B. Z. Malkin. Amsterdam: Elsevier Science Publishers. 1987. Ch. 2. P.13-49.
- 68. Blanchfield, P. The elastic constants and acoustic symmetry of LiYF₄ / P. Blanchfield, G. A. Saunders // Phys. C J. 1979. V.12. P.4673.
- 69. Лодиз, Р. Рост монокристаллов / Р. Лодиз, Р. Паркер. М: Мир, 1974
- 70. Лоунасмаа, О. В. Принципы и методы получения температур ниже 1К / О.
 В. Лоунасмаа. М: Москва, 1977.
- 71. Klekovkina, V.V. Simulations of magnetic and magnetoelastic properties of Tb₂Ti₂O₇ in paramagnetic phase // V.V. Klekovkina, A.R. Zakirov, B.Z. Malkin, L.A. Kasatkina // J. Phys.: Conf. Ser. 2011. V.324. P.012036.
- 72. Elliott, R.J. Raman Scattering and Theoretical Studies of Jahn-Teller Induced Phase Transitions in Some Rare-Earth Compounds / R.J. Elliott, R.T. Harley, W. Hayes, S.R.P. Smith // Proc. Roy. Soc. Lond. A. - 1972. - V.328. - P.217.
- 73. Carnall, W.T. A systematic analysis of the spectra of the lanthanide s doped into single crystals LaF₃ / W. T. Carnall, G. L. Goodman, K. Rajnak, R. S. Rana // J. Chem. Phys. – 1989. – V.90. – P. 3443.
- 74. Ванюнин, М.В. Теоретическое исследование спектров ЭПР и спиновой динамики в кристаллах LiYF₄, активированных редкоземельными ионами: дисс. ... канд. физ.-мат.наук: 01.04.02 / Ванюнин Михаил Валерьевич. – Казань. - 2008. – 110с.

- 75.Liu, G.K. Electronic energy level structure of Tb³⁺ in LiYF₄ / G.K. Liu, W. T. Carnall, R. P. Jones, R. L. Cone, J. Huang // J. Alloys Compounds. 1994. V.207-208. P. 69-73
- 76. Crosswhite, H.M. Parametric model for *f*-shell configurations. I. The effective-operator Hamiltonian / H.M. Crosswhite, H. Crosswhite // J. Opt. Soc. Am. B. 1984. V. 1. P. 246-254.
- 77. Купчиков, А. К Динамика решетки и электрон-фононное взаимодействие в кристалле LiTmF₄ / А.К. Купчиков, Б.З. Малкин, Д.А. Рзаев, А.И. Рыскин // ФТТ. - 1982. - Т. 24. - В. 8. - С. 2373.
- 78. Klimin, S.A. High-resolution optical spectroscopy of Tm³⁺ ions in LiYF₄: Crystal-field energies, hyperfine and deformation splittings, and the isotopic structure / S.A. Klimin, D.S. Pytalev, M.N. Popova, B.Z. Malkin, M.V. Vanyunin, S.L. Korableva // Phys. Rev. B. - 2010. - V.81. - N4. P. - 045113.
- 79. Винокуров, А.В. Электрон-деформационное взаимодействие и пьезоспектроскопические характеристики кристалла LiTmF₄ / A.B. Винокуров, Б.З. Малкин, А.И. Поминов, А.Л. Столов // ФТТ. 1988. Т. 30. В. 11. С. 3426.
- Винокуров, А.В. Пьезо-индуцированный линейный дихроизм оптического спектра 4fⁿ оболочки и электрон-фононное взаимодействие в кристалле LiYF₄:Tm³⁺ / А.В. Винокуров, Б.З. Малкин, А.И. Поминов, А.Л. Столов // ФТТ. 1986. Т. 28. В. 2. С. 381-388.
- 81. Аухадеев, Ф.Л. Магнитоупругие взаимодействия в ван-флековском парамагнетике LiTmF₄ / Ф.Л. Аухадеев, Р.Ш. Жданов, М.А. Теплов, Д.Н. Терпиловский // ФТТ. - 1981. - Т. 23. - С. 2285.
- 82. Abdulsabirov, R.Yu. Magnetic field effects in optical and far IR spectra of LiTmF₄ crystals / R.Yu. Abdulsabirov, A.A. Kazantsev, S.L. Korableva, B.Z. Malkin, S.I. Nikitin, A.L. Stolov, M.S. Tagirov, D.A. Tayurskii, J. van Tol // SPIE. – 2002. – V. 4766. – P. 59-64.
- 83.Abdulsabirov, R.Yu. The nonlinear Zeeman and parastriction effects in luminescence spectra of $\text{LiY}_{1-x}\text{Tm}_x\text{F}_4$ (1 $\ge x \ge 0.02$) crystals. / R.Yu. Abdulsabirov,

A.A. Kazantsev, S.L. Korableva, B.Z. Malkin, S.I. Nikitin, A.L. Stolov // J. Lumin. – 2006. – V.117. - №2. – P. 225-232.

- 84. Казей, З.А. Индуцированные квадрупольные эффекты вблизи кроссовера в тетерагональном шеелите TbLiF₄ в сильном магнитном поле до 50 Тл / З.А. Казей, В.В. Снегирев, Ж.М. Брото, Р.Ю. Абдулсабиров, С.Л. Кораблева // ЖЭТФ. 2012. Т. 142. В.6. С. 1174-1188.
- Liu, G. Spectroscopic Properties of Rare Earths in Optical Materials / G. Liu, B. Jacquier. China, Beijing: Springer Series in Materials Science, Tsinghua University Press, 2005. V. 83. 550 p.
- 86.Liu, G.K. Spectral hole burning, Zeeman effect, and hyperfine structure for Tb³⁺:LiYF₄ / G.K. Liu, J. Huang, R.L. Cone, B. Jacquier // Phys. Rev. B. 1988. – V.38. – P.11061.
- 87. Казей, З.А. Изинговский ферромагнетик LiTbF₄ в магнитном поле до 50 Тл / З.А. Казей, В.В. Снегирев, Р.Ю. Абдулсабиров, С.Л. Кораблева, Ж.-М. Брото, Х. Ракото // Труды 34-го совещания по физике низких температур. 2006. Т.1. С. 13.
- 88. Sato, M. Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder / M. Sato, Y. Ishii // J. Appl. Phys. – 1989. – V.66. – P. 983.
- 89. Aminov, L.K. Superhyperfine Structure of EPR Spectra in LiLuF₄:U³⁺ and LiYF₄:Yb³⁺ Single Crystals / L. K. Aminov, A.A. Ershova, D.G. Zverev, S.L. Korableva, N.I. Kurkin, B.Z. Malkin // Appl. Magn. Res. 2008. V.33. I.4. P.351-364.
- 90. Aminov, L.K. Superhyperfine structure of the EPR spectra of Nd³⁺ and U³⁺ ions in LiRF₄ (R = Y, Lu, Tm) double fluorides / L. K. Aminov, A. A. Ershova, S. L. Korableva, I. N. Kurkin, B. Z. Malkin, A.A. Rodionov // Physics of the Solid State. 2011. V.53. I.11. P. 2240-2243.
- 91. Shakurov, G.S. Direct measurements of anticrossings of the electron-nuclear energy levels in $LiYF_4$:Ho³⁺ with submillimeter EPR spectroscopy / G.S.

Shakurov, M.V. Vanyunin, B.Z. Malkin, B. Barbara, R.Yu.Abdulsabirov, S.L.Korableva // Appl. Magn. Reson. – 2005. – V.28. – I.3-4. P.251-265.

- 92. Dunn, J.L. Testing the transverse field Ising model in LiHoF4 using capacitive dilatometry / J. L. Dunn, C. Stahl, A. J. Macdonald, K. Liu, Y. Reshitnyk, W. Sim, R W Hill // Phys. Rev. B. – 2012. – V. 86. – P.094428.
- 93.Banerjee, V. Model quantum magnet: The effect of hyperfine interactions on the phase diagram and dynamic susceptibility / V. Banerjee, S. Dattagupta // Phys. Rev. B. - 2001. - V.64. - P.024427 (11pp.)
- 94.Schechter, M. Derivation of the low-T phase diagram of LiHo_xY_{1-x}F₄: A dipolar quantum Ising magnet / M. Schechter, P. C. E. Stamp // Phys. Rev. B. 2008. V.78. P. 054438 (17pp.)
- 95. Battison, J.E. Ferromagnetism in lithium holmium fluoride LiHoF₄: II. Optical and spectroscopic measurements / J.E. Battison, A. Kastent, M. J. M. Leask, J. B. Lowry, B. M. Wanklyn // J. Phys. C: Solid State Phys. – 1975. - V. 8. – P. 4089-4095.
- 96. Heyde, K. Spectroscopic properties of LiErF₄ / K. Heyde, K. Binnemans, C. Görller-Walrand // J. Chem. Soc., Faraday Trans. 1998. V.94. I.7. P.843-849.