ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ им. Л. Д. ЛАНДАУ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ШАРАФУТДИНОВ Азат Уралович

Спиновые корреляции в квантовых точках и наночастицах

Специальность 01.04.02 — Теоретическая физика

Диссертация на соискание ученой степени кандидата физико-математических наук

Черноголовка – 2015

Оглавление

Введение

Уни 1.1 1.2	версальный гамильтониан с анизотропным обменным взаимодействием Введение	10 10 11			
1.1 1.2	Введение	10 11			
1.2	1.1.1 Гамильтониан	11			
1.2	Точное аналитическое выражение для статистической суммы				
	Точное аналитическое выражение для статистической суммы				
1.3	Точное аналитическое выражение для спиновой восприимчивости	14			
	1.3.1 Продольная спиновая восприимчивость	14			
	1.3.2 Поперечная спиновая восприимчивость	16			
1.4	Точное аналитическое выражение для туннельной плотности состояний при				
	B=0	17			
	1.4.1 Частичное разделение спиновых и зарядовых степеней свободы	17			
	1.4.2 Метод Вея-Нормана-Колоколова	18			
1.5	Заключение	21			
Анализ для эквидистантного спектра 23					
2.1	Введение				
2.2	Продольная спиновая восприимчивость	23			
	2.2.1 Случай "легкая ось": $J_z \geqslant J_\perp$	24			
	2.2.2 Случай "легкая плоскость" $(J_z < J_{\perp})$	28			
2.3	Поперечная спиновая восприимчивость				
2.4	Туннельная плотность состояний	32			
	2.4.1 Введение	32			
	2.4.2 Случай нулевой температуры $T=0$	32			
	2.4.3 Случай высоких температур $T \gg \delta$	35			
2.5	Заключение	37			
	 1.3 1.4 1.5 Ана. 2.1 2.2 2.3 2.4 2.5 	1.2 Точное аналитическое выражение для спиновой восприимчивости 1.3 Точное аналитическое выражение для спиновой восприимчивости 1.3.1 Продольная спиновая восприимчивость 1.3.2 Поперечная спиновая восприимчивость 1.4 Точное аналитическое выражение для туннельной плотности состояний при $B = 0$			

6

3	Учет флуктуаций одночастичного спектра				
	3.1	Введение		39	
	3.2	Учет флуктуа	ций для восприимчивости в случае Изинга	40	
		3.2.1 Продол	тьная спиновая восприимчивость	40	
		3.2.2 Попран	жи по теории возмущений к $\overline{\chi}_{zz}$ при слабых флуктуациях	41	
		3.2.3 Функці	ия распределения χ_{zz}	45	
		3.2.4 Попере	чная спиновая восприимчивость	49	
	3.3 Учет флуктуаций для восприимчивости в случае Гейзенберга			52	
		3.3.1 Продол	ъная спиновая восприимчивость	52	
	3.4	Заключение .		54	
4	Дин	амика спина пр	ои туннельной связи с резервуаром	55	
	4.1	.1 Введение			
	4.2	Случай свобод	цных частиц	55	
	4.3	.3 Случай кулоновского взаимодействия			
	4.4	4.4 Случай гейзенберговского обменного взаимодействия			
	4.5	4.5 Мацубаровское действие АЭШ для спина			
	4.6	4.6 Заключение			
За	КЛЮч	нение		63	
Πı	оилох	кения		64	
А	Выв	од точного выр	ажения для туннельной плотности состояний	64	
		А.0.1 Вычисл	ение интеграла по вспомогательной переменной преобразова-		
		ния Ха	ббарда-Стратоновича в случае кулоновского взаимодействия .	68	
		А.0.2 Вычисл	ение интеграла по вспомогательной переменной преобразова-		
		ния Ха	ббарда-Стратоновича в случае гейзенберговского обменного		
		взаимо,	действия для статистической суммы	68	
В	Выч	исление интегр	ала по вспомогательной переменной преобразования Хаббарда-		
	Стр	атоновича в слу	учае гейзенберговского обменного взаимодействия для функции		
	Гри	на		70	
		B.0.3 G^{Ψ}_a		71	
		B.0.4 G_b^{Ψ}		72	

Список публикаций

Литература

74 75

Введение

В диссертационной работе изложены результаты исследования спиновых корреляций в квантовых точках и наночастицах. Основное внимание уделено области вблизи порога стоунеровской неустойчивости, а также эффектам, связанным с анизотропией обменного взаимодействия.

Актуальность темы. Квантовые точки и наночастицы являются типичным примером нульмерной сильнокоррелированной электроной системой. Одноэлектронный спектр электронов для данной квантовой точки или наночастицы может быть найден из решения уравнения Шредингера с соответствующими граничными условиями. Однако, найденный таким образом спектр не информативен, так как, например, изменение затворного напряжения меняет удерживающий потенциал квантовой точки, а значит и спектр. Поэтому интерес представляют статистические характеристики одноэлектронного спектра. Хорошо известно [45], что статистика уровней в квантовых точках описывается теорией случайных матриц. На физику электронов в квантовых точках оказывает сильное влияние взаимодействие в зарядовом (кулоновское), спиновом (обменное) и куперовском каналах, которое может привести к различным корреляционным эффектам. Одним из наиболее известных эффектов такого рода является кулоновская блокада — подавление транспорта через квантовую точку при низких температурах из-за сильного кулоновского взаимодействия (обычно много большего типичного расстояния между одночастичными уровнями энергии), препятствующего появлению лишнего электрона на квантовой точке. Наличие обменного взаимодействия проявляется в спиновых корреляциях. Это более тонкие эффекты, так как типично обменное взаимодействие не превышает среднего расстояния между одночастичными уровнями энергии. Однако, эффекты обменного взаимодействия проявляются экспериментально. В частности, они проявляются в статистике флуктуаций высот и расстояний между кулоновскими пиками [8],[28]. Наиболее красивый эффект, связанный с наличием обменного взаимодействия, это мезоскопическая стоунеровская неустойчивость — появление ненулевого конечного полного спина на квантовой точке при приближении к порогу стоунеровской неустойчивости [22]. Оказалось, что эффект зависит от типа обменного взаимодействия: для изотропного(гейзенберговского) обменного взаимодействия он присутствует, а для изинговского обменного взаимодействия — нет. В данной диссертационной работе мы сконцентрируемся на исследовании влияния обменного взаимодействия на термодинамические и транспортные свойства электронов в квантовых точках и наночастицах. Исследование динамики и транспорта необходимо для понимания того, как управлять и контролировать в лабораторных условиях квантовые точки и наночастицы.

Цель работы. Главная цель работы - исследование влияния обменного взаимодействия на термодинамические и транспортные свойства электронов в квантовых точках и наночастицах. Особое внимание уделяется области вблизи перехода Стоунера и роли анизотропии обменного взаимодействия. Для достижения главной цели в диссертационной работе были поставлены следующие цели:

- Точное аналитическое решение гамильтониана нульмерной модели с анизотропным обменным взаимодействием для произвольного спектра одночастичных уровней, в том числе вычисление статистической суммы, продольной и поперечной спиновых восприимчивостей, и туннельной плотности состояний.
- 2) Изучить для случая эквидистантного спектра одночастичных уровней проявление спиновых корреляций, вызванных обменным взаимодействием, в физических величинах, характеризующих электроны в квантовых точках и наночастицах, в том числе в продольной и поперечной восприимчивостях, и в туннельной плотности состояний.
- 3) Изучить влияние флуктуаций спектра одночастичных уровней на спиновые корреляции, вызванные обменным взаимодействием, в физических величинах, характеризующих электроны в квантовых точках и наночастицах, в том числе в продольной и поперечной восприимчивостях, и в туннельной плотности состояний.
- 4) Изучить влияние резервуара, с которым соединена квантовая точка или наночастица, на проявление спиновых корреляций, вызванных обменным взаимодействием.

<u>Научная новизна работы</u> заключается в следующих оригинальных результатах, которые выносятся на защиту:

1) Найдено точное аналитическое решение гамильтониана нульмерной модели с анизотропным обменным взаимодействием для произвольного спектра одночастичных уровней для статистической суммы, продольной и поперечной спиновых восприимчивостей, и туннельной плотности состояний.

- 2) Для случая эквидистантного спектра одночастичных уровней показано, что а) огибающая динамическая спиновой восприимчивости имеет один максимум и один минимум как функция частоты, б) огибающая туннельной плотности состояний как функция энергии имеет один дополнительный максимум, связанный с наличием ненулевого полного спина в основном состоянии гамильтониана нульмерной модели.
- 3) Для случаев гейзенберговского и изинговского обменного взаимодействий, доказано, что флуктуации спектра одночастичных уровней не приводят к смещению стоунеровской неустойчивости. Показано, что хвосты функции распределения статической спиновой восприимчивости являются экспоненциальными.
- 4) Выведено эффективное действие, описывающее динамику полного спина квантовой точки для случая соединения ее с резервуаром туннельным контактом.

Все результаты работы получены впервые, выводы, сделанные на их основе, обоснованы надежностью применявшихся аналитических методов, согласием с теоретическими результатами, полученными другими авторами. Развитые в диссертационной работе теоретические методы могут быть использованы для описания широкого круга явлений в электронном транспорте в квантовых точках и наночастицах.

Основные результаты диссертационной работы опубликованы в 2014 – 2015 годах в 3-х научных работах, список которых приводится в конце диссертации. Диссертация состоит из введения, четырех глав, заключения, двух приложений, списка публикаций и списка литературы.

Структура диссертации. В первой главе приводятся необходимые сведения об универсальном гамильтониане с анизотропным обменным взаимодействием, а также вывод точных выражений для статистической суммы, продольной и поперечной спиновых восприимчивостей, туннельной плотности состояний при произвольном одночастичном спектре квантовой точки. Во второй главе приведен анализ точных формул полученных в первой главе для эквидистантного спектра.

В **третьей главе** производится учет влияния флуктуаций одночастичного спектра относительно эквидистантного спектра. При малых флуктуациях учет выполнен по теории возмущений, при больших сделана оценка функции распределения спиновой восприимчивости и её моментов. В **четвертой главе** проделан вывод мацубаровского АЭШ действия для квантовой точки связанной туннельным образом с контактами. В **заключении** сформулированы основные результаты и выводы диссертационной работы, выносимые на защиту. В **приложения** вынесены громоздкие вычисления.

Глава 1

Универсальный гамильтониан с анизотропным обменным взаимодействием

1.1 Введение

В металлическом режиме, когда энергия Таулесса E_{Th} велика по сравнению со средним расстоянием между одночастичными уровнями энергий δ , квантовая точка хорошо описывается достаточно простым универсальным гамильтонианом: мезоскопические флуктуации около этого универсального гамильтониана подавлены по параметру δ/E_{Th} . Преимущество универсального гамильтониана состоит в том, что межэлектронное взаимодействие вместо полного набора матричных элементов характеризуется всего тремя параметрами: зарядовой энергией E_c , обменной энергией J^0 и энергией взаимодействия в куперовском канале J_c . Отметим, что универсальный гамильтониан допускает подход с помощью анзаца Бете [17].

В нашем исследовании мы будем использовать следующие стандартные допущения. Мы не рассматриваем взаимодействие в куперовском канале, которое приводит сверхпроводящим корреляциям в квантовых точках [39]. Это допустимо при отталкивающем взаимодействии в куперовском канале. Хотя наш точный аналитический результат для туннельной плотности состояний в случае одноосевой анизотропии верен для произвольного одночастичного спектра, при его анализе мы будем исследовать эффекты случайности спектра. Как было отмечено выше в этом случае нужно учитывать поправки к нуль-мерному гамильтониану, которые порождены флуктуациями матричных элементов электрон-электронного взаимодействия, несмотря на металлический режим $\delta/E_{Th} \ll 1$. В случае изотропного обменного взаимодействия эти поправки пренебрежимо малы [40].

1.1.1 Гамильтониан

Универсальный гамильтониан с прямым кулоновским и анизотропным спиновым взаимодействием записывается следующим образом

$$H = H_0 + H_C + H_S. (1.1)$$

Гамильтониан невзаимодействующих электронов,

$$H_0 = \sum_{\alpha,\sigma} \epsilon_{\alpha,\sigma} a^{\dagger}_{\alpha\sigma} a_{\alpha\sigma}, \qquad (1.2)$$

записывается, как обычно, через операторы рождения $(a_{\alpha\sigma}^{\dagger})$ и уничтожения $(a_{\alpha\sigma})$. Он содержит в себе зависящие от спина $(\sigma = \pm)$ одночастичные уровни $\epsilon_{\alpha,\sigma}$. В дальнейшем мы будем предполагать что уровни испытывают Зеемановское расщепление магнитным полем B, т.е. $\epsilon_{\alpha,\sigma} = \epsilon_{\alpha} + g_L \mu_B B \sigma/2$. Здесь g_L и μ_B g-фактор Ланде и магнетон Бора. Зарядовая часть гамильтониана

$$H_C = E_c (\hat{n} - N_0)^2, \tag{1.3}$$

описывает прямое кулоновское взаимодействие в нульмерном приближении, $E_{\rm Th}/\delta \gg 1$. Здесь

$$\hat{n} = \sum_{\alpha} n_{\alpha} = \sum_{\alpha,\sigma} a^{\dagger}_{\alpha,\sigma} a_{\alpha,\sigma}$$
(1.4)

оператор числа частиц и N₀ наведенный затвором заряд. Слагаемое,

$$H_S = -J_{\perp}(\hat{S}_x^2 + \hat{S}_y^2) - J_z \hat{S}_z^2, \qquad (1.5)$$

представляет собой обменное взаимодействие внутри КТ. Оператор полного спина

$$\hat{\boldsymbol{S}} = \frac{1}{2} \sum_{\sigma\sigma'} a^{\dagger}_{\alpha\sigma} \boldsymbol{\sigma}_{\sigma\sigma'} a_{\alpha\sigma'}$$
(1.6)

определен через стандартные матрицы Паули σ . В случае изотропного, Гейзенберговского обмена $J_{\perp} = J_z$, гамильтониан (1.1) сводится к универсальному гамильтониану, который описывает КТ в пределе $E_{\rm Th}/\delta \gg 1$. [22] В этом предельном случае одночастичные уровни ϵ_{α} случайны. Их статистика (в отсутствии магнитного поля, B = 0) описывается ортогональным ансамблем Вигнера-Дайсона. Гамильтониан (1.1) с Изинговским обменом, $J_{\perp} = 0$, и B = 0 может быть использован для описания двумерных КТ со спин орбитальным взаимодействием, [21, 18] В этом случае статистика ϵ_{α} описывается унитарным ансамблем Вигнера-Дайсона.

Полезно сравнить изотропный (гейзенберговский) и изинговский случаи обменного взаимодействия. Последний, в частности, может быть реализован в двумерной квантовой точке при наличии спин-орбитального взаимодействия. Спин-орбитальное взаимодействие приводит к тому, что описание с помощью универсального гамильтониана становится неприменимым. Это происходит из-за того, что в этом случае нельзя пренебречь флуктуациями матричных элементов взаимодействия даже в металлическом режиме, $\delta/E_{\rm Th} \ll 1$ [18, 20]. В двумерных квантовых точках с компонентами орбитального момента смешиваются только компоненты спина, лежащие в плоскости квантовой точки, тогда как перпендикулярная проекция спина коммутирует с гамильтонианом. Если параметры квантовой точки удовлетворяют следующему условию, $(\lambda_{SO}/L)^2 \gg (E_{\rm Th}/\delta)(L/\lambda_{SO})^4 \gg 1$, где λ_{SO} характерная длина спин-орбитального взаимодействия, низкоэнергетическое описание дается универсальным гамильтонианом с изинговским обменным взаимодействием $(J_z > 0)$ [18, 21]. В этом случае для эквидистантного спектра мезоскопической стоунеровской неустойчивости нет [22]. Так как полный спин в основном состоянии равен нулю для всех $J_z < \delta$, туннельная состояний почти не зависит от J_z [23].

Простейший способ изучить переход от гейзенберговского к изинговскому обменному взаимодействию это рассмотреть универсальный гамильтониан с одноосевой анизотропией обменного взаимодействия. Хотя эта модель не имеет полноценного микроскопического обоснования она может быть применима для ферромагнитных частиц нанометрового размера. Заметим, что существенная анизотропия обменного взаимодействия была обнаружена в экспериментах по изучению туннельного спектра таких наночастиц [24]. Модель похожая на гамильтониан с анизотропным обменным взаимодействием позволяет объяснить основные особенности экспериментально измеренного спектра возбуждений [7]. Анизотропия обменного взаимодействия может быть вызвана магнитокристаллической анизотропией в объеме, анизотропией поверхности и формы. Наличие спин-орбитального взаимодействия приводит к большим мезоскопическим флуктуациям в анизотропной части обменного взаимодействия [25, 26]. В квантовых точках анизотропное обменное взаимодействие может быть вызвано ферромагнитными контактами [27].

1.2 Точное аналитическое выражение для статистической суммы

Статистическая сумма в большого канонического ансамбля для гамильтониана (1.1) определяется стандартным образом $Z = \text{Tr} e^{-\beta H + \beta \mu \hat{n}}$ (μ - химический потенциал). Она может быть найдена с помощью следующего трюка. Разобьем H_S на гейзенберговскую и изинговскую составляющие:

$$H_S = -J_{\perp} \hat{S}^2 - (J_z - J_{\perp}) \hat{S}_z^2.$$
(1.7)

Тогда оператор эволюции в мнимом времени может быть записан следующим образом.

$$e^{-\tau H_S} = \frac{\sqrt{\tau}}{2\sqrt{\pi}|J_z - J_\perp|} \int_{-\infty}^{\infty} d\mathcal{B} \exp\left(-\frac{\tau \mathcal{B}^2}{4|J_z - J_\perp|}\right) e^{\tau J_\perp \hat{S}^2 - \eta \mathcal{B}\hat{S}_z},\tag{1.8}$$

где $\eta = \sqrt{\text{sgn}(J_z - J_\perp)}$. Экспонента во второй строчке (1.8) наводит на мысль что, статистическая сумма для гамильтониана (1.1) может быть найдена в два шага. Во-первых, можно использовать известные результаты для случая изотропного обмена и эффективного магнитного поля $B + \eta \mathcal{B}/(g_L \mu_B)$. [28, 29] Во-вторых нужно проинтегрировать по эффективному магнитному полю \mathcal{B} с ядром указанным в первой строке (1.8). Таким образом, мы получаем следующий точный (без приближений) результат для статистической суммы большого канонического ансамбля для гамильтониана (1.1):

$$Z(b) = \sum_{n_{\uparrow}, n_{\downarrow}} Z_{n_{\uparrow}} Z_{n_{\downarrow}} e^{-\beta E_c (n-N_0)^2 + \beta J_{\perp} m(m+1) + \beta \mu n} \operatorname{sgn}\left(2m+1\right) \sum_{l=-|m+1/2|+1/2}^{|m+1/2|-1/2} e^{\beta (J_z - J_{\perp})l^2 - \beta bl}.$$
 (1.9)

Здесь $b = g_L \mu_B B/2$. Целые числа n_{\uparrow} и n_{\downarrow} представляют собой число частиц со спином вверх и спином вниз, соответственно. Полное число электронов $n = n_{\uparrow} + n_{\downarrow}$, и $m = (n_{\uparrow} - n_{\downarrow})/2$. Заметим, что для конфигурации с заданными n_{\uparrow} и n_{\downarrow} полный спин равен S = |m + 1/2| - 1/2. Целое число l соответствует z проекции полного спина S. Множители $Z_{n_{\uparrow}}$ и $Z_{n_{\downarrow}}$ являются статистическими суммами канонического ансамбля для n_{\uparrow} и n_{\downarrow} невзаимодействующих бесспиновых электронов. Каноническая статистическая сумма считает вклады от одночастичных уровней энергии и дается интегралом Дарвина-Фаулера:

$$Z_n = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-in\theta} \prod_{\gamma} \left(1 + e^{i\theta - \beta\epsilon_{\gamma}} \right).$$
(1.10)

Для гейзенберговского обменного взаимодействия, $J_{\perp} = J_z$ ответ (1.9) совпадает с результататми известными из литературы. [28, 30, 29]. В случае изинговского обменного взаимодействия, $J_{\perp} = 0$, результат (1.9) согласуется с результатами из [23]. Заметим, что результат (1.9) может быть получен напрямую из (1.1) с помощью преобразования Вея-Нормана-Колоколова (см. Приложение А).

Для анализа выражения (1.9) для статистической суммы большого канонического ансамбля будет удобно использовать следующее, полностью эквивалентное интегральное представление:

$$Z(b) = \frac{e^{-\beta J_{\perp}/4}}{2\pi\sqrt{J_{\perp}|J_z - J_{\perp}|}} \int_{-\infty}^{\infty} dh d\mathcal{B} \, e^{-\frac{h^2}{\beta J_{\perp}}} e^{-\frac{\beta(b+\eta\mathcal{B})^2}{4J_{\perp}}} \frac{\operatorname{sh}(h)\operatorname{sh}\left((b+\eta\mathcal{B})h/J_{\perp}\right)}{\operatorname{sh}\left(\beta(b+\eta\mathcal{B})/2\right)} \sum_{k\in\mathbb{Z}} e^{-\beta E_c(k-N_0)^2} \times e^{-\frac{\beta\mathcal{B}^2}{4|J_z - J_{\perp}|}} \int_{-\pi}^{\pi} \frac{d\phi_0}{2\pi} e^{i\phi_0 k} \prod_{\sigma} e^{-\beta\Omega_0(\mu - i\phi_0 T + \sigma hT)}.$$
(1.11)

Статистическая сумма большого канонического ансамбля для невзаимодействующих электронов определяется обычным образом

$$\Omega_0(\mu) = -T \ln \prod_{\gamma} \left(1 + e^{-\beta(\epsilon_{\gamma} - \mu)} \right).$$
(1.12)

Величины ϕ_0 и *h* имеют смысл нуль-частотной мацубаровской компоненты электрического потенциала и модуля эффективного магнитного поля, которые используются для того, чтобы расцепить вклады прямого кулоновского [31] и обменного взаимодействия [23, 32], соответственно.

1.3 Точное аналитическое выражение для спиновой восприимчивости

1.3.1 Продольная спиновая восприимчивость

Общие выражения (1.9) и (1.11) для статистической суммы большого канонического ансамбля Z позволяют нам получить результат для продольной спиновой восприимчивости:

$$\chi_{zz}(T,b) \equiv T \frac{\partial^2}{\partial b^2} \ln Z =$$
(1.13)

$$\chi_{zz} = \frac{e^{-\beta J_{\perp}/4}}{2\pi\sqrt{J_{\perp}^5}|J_z - J_{\perp}|} \int_{-\infty}^{\infty} dh d\mathcal{B} \, e^{-\frac{1}{4\beta J_{\perp}}[4h^2 + \beta^2(b+\eta\mathcal{B})^2]} \frac{\mathrm{sh}\,(h)}{\mathrm{sh}\,^3\big(\beta(b+\eta\mathcal{B})/2\big)} e^{-\frac{\beta\mathcal{B}^2}{4|J_z - J_{\perp}|}]} \\ \times \Big[\mathrm{sh}\,\big((b+\eta\mathcal{B})h/J_{\perp}\big)(h^2\,\mathrm{sh}\,^2\frac{\beta(b+\eta\mathcal{B})}{2} + \frac{\beta^2J_{\perp}^2}{4}(1+\,\mathrm{ch}\,^2\frac{\beta(b+\eta\mathcal{B})}{2}) \\ -\frac{\beta h}{2}\,\mathrm{ch}\,\big((b+\eta\mathcal{B})h/J_{\perp}\big)\,\mathrm{sh}\,\beta(b+\eta\mathcal{B}))\Big] \prod_{\sigma} e^{\beta\Omega_0(\tilde{\mu}) - \beta\Omega_0(\tilde{\mu} + h\sigma/\beta)}$$
(1.14)

Заметим, что в нулевом магнитном поле можно пользоваться эквивалентной формулой

$$\chi_{zz}(T, b=0) = \partial \ln Z / \partial J_z \tag{1.15}$$

чтобы упростить расчеты. Как известно [31, 33], при $T \gg \delta$ (в интересующем нас режиме) мы можем проинтегрировать по ϕ_0 в (1.11) в седловом приближении. Тогда статистическая сумма в большом каноническом ансамбле разбивается на два сомножителя:

$$Z = Z_C Z_S, \tag{1.16}$$

где

$$Z_C = \sqrt{\frac{\beta \Delta}{4\pi}} \sum_{n \in \mathbb{Z}} e^{-\beta E_c (n-N_0)^2 + \beta(\mu-\mu_n)n - 2\beta \Omega_0(\mu_n)}.$$
(1.17)

Здесь μ_n - решение седлового уравнения на седловую точку $n=-2\partial\Omega_0(\mu)/\partial\mu$ и

$$\Delta^{-1} = -\frac{\partial^2 \Omega_0(\mu)}{\partial \mu^2} \Big|_{\mu=\mu_n}$$
(1.18)

термодинамическая плотность состояний на уровне Ферми. Заметим, что в режиме $T \ll E_c$ (которым мы и интересуемся) можно приближать μ_n с помощью $\tilde{\mu} = \mu_{N_0}$. Сомножитель

$$Z_{S} = \frac{e^{-\beta J_{\perp}/4}}{2\pi \sqrt{J_{\perp}|J_{z} - J_{\perp}|}} \int_{-\infty}^{\infty} dh d\mathcal{B} \, e^{-\frac{1}{4\beta J_{\perp}} [4h^{2} + \beta^{2}(b+\eta\mathcal{B})^{2}]} \frac{\operatorname{sh}(h) \operatorname{sh}\left((b+\eta\mathcal{B})h/J_{\perp}\right)}{\operatorname{sh}\left(\beta(b+\eta\mathcal{B})/2\right)} e^{-\frac{\beta\mathcal{B}^{2}}{4|J_{z}-J_{\perp}|}]} \times \prod_{\sigma} e^{\beta\Omega_{0}(\tilde{\mu}) - \beta\Omega_{0}(\tilde{\mu} + h\sigma/\beta)}$$
(1.19)

описывает вклад в статистическую сумму за счет обменного взаимодействия. Вклад от зарядовой энергии Z_C не зависит от магнитного поля, поэтому не влияет на спиновую восприимчивость. Заметим, что нормировка такова, что $Z_S = 1$ для $b = J_{\perp} = J_z = 0$. Далее в этом разделе мы будем обсуждать только Z_S .

1.3.2 Поперечная спиновая восприимчивость

Поперечная спиновая восприимчивость определяется следующим образом (см, например, [34])

$$\chi_{\perp}(\omega) = \frac{i}{Z} \int_{0}^{\infty} dt e^{i(\omega+i0^{+})t} \operatorname{Tr}\left([\hat{S}_{+}(t), \hat{S}_{-}(0)]e^{-\beta H}\right),$$
(1.20)

где $\hat{S}_{\pm} = \hat{S}_x \pm i \hat{S}_y$. Т.к. операторы проекций полного спина \hat{S}_x , \hat{S}_y не коммутируют с гамильтонианом H (для $J_z \neq 0$) поперечная спиновая восприимчивость нетривиально зависит от частоты.

Чтобы найти поперечную динамическую спиновую восприимчивость (1.20) мы используем уравнения движения Гейзенберга: $d\hat{S}/dt = i[H, S]$. Т.к. операторы S_z коммутируют с гамильтонианом, то S_z сохраняется, $\hat{S}_z(t) = \hat{S}_z$. Для других компонент полного спина можно найти

$$\hat{S}^{\pm}(t) = e^{\mp 2i(J_{\perp} - J_z)\hat{S}_z t} \hat{S}^{\pm}(0) e^{-i(J_{\perp} - J_z)t \pm ibt} \equiv \hat{S}^{\pm}(0) e^{\mp 2i(J_{\perp} - J_z)\hat{S}_z t} e^{i(J_{\perp} - J_z)t \pm ibt}.$$
(1.21)

Используя соотношения (1.21) мы интегрируем по времени в (1.20) и получаем следующее операторное выражение для поперечной спиновой восприимчивости:

$$\chi_{\perp}(\omega) = \frac{1}{Z} \sum_{\sigma=\pm} \operatorname{Tr} \frac{\left(\sigma \left[\hat{S}^2 - \hat{S}_z^2\right] - \hat{S}_z\right) e^{-\beta H}}{\omega + b + (J_{\perp} - J_z)(2\hat{S}_z + \sigma) + i0^+}.$$
 (1.22)

Т.к. операторы \hat{S}_z и \hat{S}^2 коммутируют с H, можно легко сосчитать след в (1.22) с помощью (1.9). Таким образом мы получаем точное выражение для динамической спиновой восприимчивости:

$$\chi_{\perp}(\omega) = \frac{1}{Z} \sum_{n_{\uparrow}, n_{\downarrow}} Z_{n_{\uparrow}} Z_{n_{\downarrow}} e^{-\beta E_c (n-N_0)^2 + \beta J_{\perp} m (m+1) + \beta \mu n} \operatorname{sgn}(2m+1) \sum_{l=-|m+1/2|+1/2}^{|m+1/2|-1/2} e^{\beta (J_z - J_{\perp})l^2 - \beta b l} \times \sum_{\sigma=\pm} \frac{\sigma [m(m+1) - l^2] - l}{\omega + b + (J_{\perp} - J_z)(2l + \sigma) + i0^+}.$$
(1.23)

В дальнейшем нас будет интересовать мнимая часть спиновой восприимчивости χ_⊥(ω). Вещественная часть может быть восстановлена с помощью соотношений Крамерса-Кронига. Используя (1.23) мнимая часть динамической поперечной спиновой восприимчивости может быть переписана как

$$\operatorname{Im} \chi_{\perp}(\omega) = -\frac{\pi}{Z} \sum_{n \in \mathbb{Z}} \sum_{\sigma=\pm} \delta \left(\omega + b + (2n - \sigma)(J_z - J_{\perp}) \right) \left(n + \sigma T \frac{\partial}{\partial J_{\perp}} \right) Z(n).$$
(1.24)

Сделаем преобразование Фурье от статистической суммы $Z(b + i\lambda T)$ по комплексному магнитному полю $b + i\lambda T$:

$$Z(n) = \int_{-\pi}^{\pi} \frac{d\lambda}{2\pi} e^{-i\lambda n} Z(b + i\lambda T).$$
(1.25)

Как следует из (1.24) мнимая часть поперечной спиновой восприимчивости подчиняется следующему правилу сумм:

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \operatorname{Im} \chi_{\perp}(\omega) = M, \qquad (1.26)$$

где намагниченность $M = -\langle \hat{S}_z \rangle = T \partial \ln Z / \partial b$. Т.к. при b = 0 функция Z(n) четна, мнимая часть поперечной спиновой восприимчивости нечетна по частоте: $\text{Im } \chi_{\perp}(-\omega) = -\text{Im } \chi_{\perp}(\omega)$ так, что правило сумм (1.26) очевидным образом выполнено.

Отметим, что в случае изотропного обменного взаимодействия, $J_z = J_{\perp}$, (1.24) выражение приводится к тривиальному, $\operatorname{Im} \chi_{\perp}(\omega) = 2\pi M \delta(\omega - b)$. В этом случае поведение поперечной спиновой восприимчивости полностью определяется намагниченностью M. Поэтому, в дальнейшем мы не будем отдельно обсуждать поперечную спиновую восприимчивость для изотропного обменного взаимодействия.

1.4 Точное аналитическое выражение для туннельной плотности состояний при B = 0

1.4.1 Частичное разделение спиновых и зарядовых степеней свободы

Туннельная плотность состояний выражается через мацубаровскую функцию Грина следующим образом [3]

$$\nu(\varepsilon) = -\frac{1}{\pi} \operatorname{ch} \frac{\beta \varepsilon}{2} \int_{-\infty}^{\infty} dt \, e^{i\varepsilon t} \sum_{\alpha,\sigma} G_{\alpha,\sigma\sigma} \left(it + \beta/2 \right), \qquad (1.27)$$

где $\beta = 1/T$. В лагранжевом формализме, мацубаровская функция Грина, являющаяся матрицей в спиновом пространстве, записывается в следующем виде

$$G_{\alpha}(\tau_{1},\tau_{2}) = -\frac{1}{Z} \mathcal{T} \int \mathcal{D}[\overline{\Psi},\Psi,\phi,\mathbf{\Phi}] \Psi_{\alpha}(\tau_{1}) \overline{\Psi}_{\alpha}(\tau_{2}) e^{-S_{\text{tot}}},$$
$$Z = \int \mathcal{D}[\overline{\Psi},\Psi,\phi,\mathbf{\Phi}] e^{-S_{\text{tot}}}.$$
(1.28)

Здесь *T* обозначает временное упорядочение, *S*_{tot} это действие в мнимом времени для гамильтониане (1.1) после преобразования Хаббарда-Стратоновича:

$$S_{\text{tot}} = \int_{0}^{\beta} d\tau \Biggl\{ \sum_{\alpha} \overline{\Psi}_{\alpha} \left[\partial_{\tau} - \epsilon_{\alpha} + \mu + i\phi + \frac{\boldsymbol{\sigma} \cdot \boldsymbol{\theta}}{2} \right] \Psi_{\alpha} + \frac{\theta_{x}^{2} + \theta_{y}^{2}}{4J_{\perp}} + \frac{\theta_{z}^{2}}{4J_{z}} + \frac{\phi^{2}}{4E_{c}} - iN_{0}\phi \Biggr\}.$$
(1.29)

Здесь $\overline{\Psi}_{\alpha} = (\overline{\psi}_{\alpha\uparrow}, \overline{\psi}_{\alpha\downarrow})^T, \Psi_{\alpha} = (\psi_{\alpha\uparrow}, \psi_{\alpha\downarrow})$ грассмановы переменные, соответствующие электронам на квантовой точке. Разобьем скалярное поле $\phi(\tau)$ следующим образом

$$\phi(\tau) = \tilde{\phi}(\tau) + \frac{2\pi m}{\beta} + \phi_0, \int_0^\beta d\tau \, \tilde{\phi}(\tau) = 0, \, |\phi_0| \leqslant \pi T.$$
(1.30)

Здесь *m*- целое число. Слагаемое $\tilde{\phi}(\tau) + 2\pi mT$ может быть откалибровано (см [4, 33, 37, 23]). После этого функция Грина (1.28) принимает следующий вид

$$G_{\alpha}(\tau_1, \tau_2) = \int_{-\pi T}^{\pi T} \frac{d\phi_0}{2\pi T} \frac{\mathcal{Z}(\phi_0)}{Z} D(\tau_{12}, \phi_0) \,\mathcal{G}_{\alpha}(\tau_{12}, \phi_0), \qquad (1.31)$$

$$Z = \int_{-\pi T}^{\pi T} \frac{d\phi_0}{2\pi T} D(0,\phi_0) \mathcal{Z}(\phi_0), \qquad (1.32)$$

где $au_{12} \equiv au_1 - au_2$ где

$$D(\tau, \phi_0) = e^{-E_c |\tau|(1-|\tau|T)} \sum_{k \in \mathbb{Z}} e^{i\phi_0(\beta k+\tau)} e^{-\beta E_c (k-N_0+\tau T)^2}.$$
(1.33)

- это так называемый кулоновский пропагатор. Функция Грина $\mathcal{G}_{\alpha}(\tau_{12}, \phi_0)$ соответствует действию S_{tot} с ϕ замененным на ϕ_0 в первой строке (1.29) и замененным на 0 во второй строке. Таким образом, $\mathcal{G}_{\alpha}(\tau_{12}, \phi_0)$ могут рассматриваться как одночастичные функции Грина для гамильтониана $\mathcal{H} = \mathcal{H}_0 + H_S$ где \mathcal{H}_0 равно H_0 (см Ур. (1.1)). Подчеркнем, что зарядовые и спиновые степени свободы не разделены полностью. Информация о H_C остается в ϕ_0 , которое ведет к небольшому мнимому сдвигу хим. потенциала.

1.4.2 Метод Вея-Нормана-Колоколова

В гамильтоновом формализме $\mathcal{G}_{\alpha}(\tau_{12})$ может быть переписана следующим образом

$$\mathfrak{G}_{\alpha}(\tau) = \frac{1}{\mathcal{Z}} \begin{cases} -\mathcal{K}_{\alpha}(-i\tau, -i\tau + i\beta), & \tau > 0, \\ \mathcal{K}_{\alpha}(-i\tau - i\beta, -i\tau), & \tau \leqslant 0, \end{cases}$$
(1.34)

где $\mathcal{Z} = \exp(-\beta \mathcal{H})$ и

$$\mathcal{K}_{\alpha,\sigma_1,\sigma_2}(t_+,t_-) = \operatorname{Tr} \, e^{-it_+\mathcal{H}} a^{\dagger}_{\alpha\sigma_1} e^{it_-\mathcal{H}} a_{\alpha\sigma_2}.$$
(1.35)

Используя коммутативность \mathcal{H}_0 и H_S мы можем разделить оператор эволюции для \mathcal{H} на две части, $\exp(it\mathcal{H}) = \exp(it\mathcal{H}_0)\exp(itH_S)$. Далее, применим преобразование Хаббарда-Стратоновича чтобы избавиться от членов четвертого порядка по электронным операторам в показателе экспоненты H_S :

$$e^{\mp itH_S} = \lim_{N \to \infty} \int \left[\prod_{n=1}^N d\theta_n\right] \prod_{\alpha} \Im e^{it\theta_n s_\alpha/N} \exp\left[\pm \frac{i\Delta}{4} \sum_{n=1}^N \left(\frac{\theta_{x,n}^2 + \theta_{y,n}^2}{J_\perp} + \frac{\theta_{z,n}^2}{J_z}\right)\right], \quad (1.36)$$

где $\Delta = t/N$. Здесь и далее мы опускаем нормировочные множители. Они будут восстановлены в конечном ответе. Далее мы сфокусируемся на вычислении $\mathcal{K}_{\alpha}(t_{+}, t_{-})$. Соответствующая статистическая сумма \mathcal{Z} была вычислена выше (см. Приложение). Применим преобразование Вея-Нормана к уравнению (1.36) [35],[36], что позволит нам переписать \mathcal{T} -экспоненту как произведение обыкновенных экспонент:

$$\Im e^{i\Delta\boldsymbol{\theta}_{n}\boldsymbol{s}_{\alpha}} = e^{ps_{\alpha}^{-p}\kappa_{p,N}^{p}} \exp\left(is_{\alpha}^{z}\Delta\sum_{n=1}^{N}\rho_{p,n}\right) \exp\left(is_{\alpha}^{p}\Delta\sum_{n=1}^{N}\kappa_{p,n}^{-p}\prod_{j=1}^{n}e^{-ip\Delta\rho_{p,j}}\right),\tag{1.37}$$

где $s_{\alpha}^{p} = s_{\alpha}^{x} + ips_{\alpha}^{y}$. внение (1.37) верно для обоих знаков $p = \pm$. Воспользуемся следующим начальным условием $\kappa_{p,1}^{p} = 0$. Переменные θ могут быть выражены через новые переменные ρ_{p}, κ_{p}^{p} and κ_{p}^{-p} следующим образом:

$$\frac{\theta_{x,n} - ip\theta_{y,n}}{2} = \kappa_{p,n}^{-p}, \ \theta_{z,n} = \rho_{p,n} - \kappa_{p,n}^{-p} (\kappa_{p,n}^p + \kappa_{p,n-1}^p),$$

$$\frac{\theta_{x,n} + ip\theta_{y,n}}{2} = \frac{\kappa_{p,n}^p - \kappa_{p,n-1}^p}{ip\Delta} + \frac{\rho_{p,n} (\kappa_{p,n}^p + \kappa_{p,n-1}^p)}{2} - \frac{(\kappa_{p,n}^p + \kappa_{p,n-1}^p)^2}{4} \kappa_{p,n}^{-p}.$$
(1.38)

Заметим, что вектор $\boldsymbol{\theta}_n$ в (1.37) должен быть вещественным, но преобразование (1.38) предполагает его комплексность. Это соответствует повороту контура интегрирования в (1.37). Чтобы сохранить число независимых переменных мы выберем $\rho_{p,n}$ чисто мнимыми, $\rho_{p,n} = -\rho_{p,n}^*$, а $\kappa_{p,n}^+$ и $\kappa_{p,n}^-$ комплексно сопряженными , $\kappa_{p,n}^+ = (\kappa_{p,n}^-)^*$. Преобразование (1.38) предполагает, что величина $(\kappa_{p,N}^p + \kappa_{p,N-1}^p)/2$ соответствует $\kappa_p^p(t)$ в непрерывном пределе. В общем случае можно использовать дискретное представление $\kappa_p^p(t)$ вида $\nu \kappa_{p,N}^p + (1-\nu)\kappa_{p,N-1}^p$ с $0 \leq \nu \leq 1$. Однако, симметричный выбор выделен, так как для $\nu = 1/2$ достаточно работать с (1.36) в первом порядке по Δ . Якобиан преобразования (1.38) дается следующим выражением $\exp(ip\Delta \sum_{n=1}^N \rho_{p,n}/2)$ [36]. Переписывая две экспоненты в (1.35) с помощью представления (1.37), мы получаем

$$\mathcal{K}_{\alpha\sigma_{1}\sigma_{2}} = \prod_{p=\pm} \left\{ \prod_{n_{p}=1}^{N_{p}} \int d\kappa_{p,n_{p}}^{p} d\kappa_{p,n_{p}}^{-p} d\rho_{p,n_{p}} \exp\left[\frac{ip\Delta\rho_{p,n_{p}}}{2} \left(1 - \frac{\rho_{p,n_{p}}}{2J_{z}} - \frac{\varkappa}{J_{\perp}} \kappa_{p,n_{p}}^{-p} \left(\kappa_{p,n_{p}}^{p} + \kappa_{p,n_{p}-1}^{p}\right)\right) + \frac{ip\Delta}{4J_{\perp}} \left(\kappa_{p,n_{p}}^{-p}\right)^{2} \left(\kappa_{p,n_{p}-1}^{p}\right)^{2} - \frac{\kappa_{p,n_{p}}^{-p}}{J_{\perp}} \left(\kappa_{p,n_{p}}^{p} - \kappa_{p,n_{p}-1}^{p}\right)\right] \right\} \prod_{\gamma \neq \alpha} \operatorname{Tr}[\mathcal{A}_{\gamma}^{(+)}\mathcal{A}_{\gamma}^{(-)}] \times \operatorname{Tr}[\mathcal{A}_{\alpha}^{(+)}a_{\alpha\sigma_{1}}^{\dagger}\mathcal{A}_{\alpha}^{(-)}a_{\alpha\sigma_{2}}]. \tag{1.39}$$

Здесь предполагается предел $N_p \to \infty$. Величина $\varkappa = 1 - J_\perp/J_z$ характеризует отклонение от изотропного случая.

Одночастичные операторы $\mathcal{A}_{\alpha}^{(p)}$ представляют оператор эволюции. В соответствиии с (1.37) - (1.38) они определяются следующим образом

$$\mathcal{A}_{\alpha}^{(p)} = e^{-ipt_{p}\epsilon_{\alpha}n_{\alpha}}e^{ps_{\alpha}^{-p}\kappa_{p,N_{p}}^{p}}\exp\left(is_{\alpha}^{z}\Delta\sum_{n=1}^{N_{p}}\rho_{p,n}\right)\exp\left[is_{\alpha}^{p}\Delta\sum_{n=1}^{N_{p}}\kappa_{p,n}^{-p}\exp\left(-ip\Delta\sum_{j=1}^{n}\rho_{p,j}\right)\right].$$
 (1.40)

Далее интегрируя по x, ζ , h и ϕ_0 в (1.31) и (1.34), получим следующий результат для одночастичной функции Грина:

$$G_{\alpha\uparrow\uparrow}(\tau) = -\sum_{n_{\uparrow,\downarrow}\in\mathbb{Z}} e^{-\beta E_c(n-N_0)^2 + \beta\mu n + \beta J_{\perp}m(m+1)} \frac{\sqrt{\beta\pi}}{8Z\sqrt{J_z - J_{\perp}}} e^{(J_z - J_{\perp})\tau(1-\tau T)} \int_{-\infty}^{\infty} d\mathcal{B} e^{\frac{-\beta \mathcal{B}^2}{4(J_z - J_{\perp})}} \times e^{-[\epsilon_\alpha - \mu + E_c(2n-2N_0+1) + J_{\perp}(m+1/4) + \mathcal{B}/2]\tau} \left\{ e^{\beta \mathcal{B}/2} \Upsilon(\beta \mathcal{B}, 2m+1) \left[Z_{n_{\uparrow}}(\epsilon_\alpha) Z_{n_{\downarrow}} - Z_{n_{\uparrow}+1} Z_{n_{\downarrow}-1}(\epsilon_\alpha) \right] - \Upsilon(-\beta \mathcal{B}, -2m) \left[Z_{n_{\uparrow}} Z_{n_{\downarrow}}(\epsilon_\alpha) - Z_{n_{\uparrow}}(\epsilon_\alpha) Z_{n_{\downarrow}} \right] \right\}.$$
(1.41)

Здесь $n_{\uparrow,\downarrow}=n/2\pm m,$ и $Z_n(\epsilon_{\alpha})$ это интеграл типа Дарвина-Фаулера:

$$Z_n(\epsilon_\alpha) = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-i\theta n} \prod_{\gamma \neq \alpha} \left(1 + e^{-\beta \epsilon_\gamma + i\theta} \right), \qquad (1.42)$$

И

$$\Upsilon(z,x) = \frac{e^{(x-1)z/2}}{\operatorname{sh}(z/2)} - \frac{\operatorname{sh}(xz/2)}{x\operatorname{sh}^2(z/2)}.$$
(1.43)

Наконец, подставляя выражение (1.41) для функции Грина в (??) и интегрируя, мы полу-

чим следующий результат для туннельной плотности состояний для гамильтониана (1.1):

$$\nu(\varepsilon) = \frac{1+e^{-\beta\varepsilon}}{Z} \sum_{n_{\uparrow},n_{\downarrow}} Z_{n_{\uparrow}} Z_{n_{\downarrow}} e^{-\beta E_{c}(n-N_{0})^{2}+\beta\mu n+\beta J_{\perp}m(m+1)} \operatorname{sgn}(2m+1) \sum_{l=-|m+1/2|+1/2}^{|m+1/2|-1/2} e^{\beta(J_{z}-J_{\perp})l^{2}} \\ \times \sum_{\alpha} \Biggl\{ \delta \Bigl(\varepsilon - \epsilon_{\alpha} + \mu - E_{c}(2n-2N_{0}+1) - J_{\perp}(m+1/4) + (J_{z}-J_{\perp})(l+1/4) \Bigr) \\ \times \frac{m-l}{m} \Biggl[\frac{Z_{n_{\downarrow}}(\epsilon_{\alpha})}{Z_{n_{\downarrow}}} - \frac{Z_{n_{\uparrow}}(\epsilon_{\alpha})}{(2m+1)Z_{n_{\uparrow}}} \Biggr] + \frac{2m+2+2l}{2m+1} \frac{Z_{n_{\uparrow}}(\epsilon_{\alpha})}{Z_{n_{\uparrow}}} \\ \times \delta \Bigl(\varepsilon - \epsilon_{\alpha} + \mu - E_{c}(2n-2N_{0}+1) + J_{\perp}(m+3/4) + (J_{z}-J_{\perp})(l+1/4) \Bigr) \Biggr\}.$$
(1.44)

Каждое слагаемое в (1.44) соответствует туннелированию электрона энергией ε и заданным спином с(на) одночастичного уровня ϵ_{α} . Каждая дельта-функция отражает закон сохранения энергии. Множитель $Z_n(\epsilon_{\alpha})/Z_n$ соответствует вероятности того, что одночастичный уровень с энергией ϵ_{α} не занят при условии, что полное число электронов равно n. В изотропном пределе, $J_z = J_{\perp}$, (1.44) совпадает с результатом полученным в [29],[30]. В случае Изинговского обменного взаимодействия, $J_{\perp} = 0$, (1.44) преобразуется в результат из [23]. В отсутствии обменного взаимодействия, $J_z = J_{\perp} = 0$, результат (1.44) совпадает с выражением из [37].

Из-за снятия вырождения многочастичного спектра обменным взаимодействием каждый дельта-пик для изотропного случая заменяется 2m + 1 пиком. Огибающая этого множества пиков имеет ширину порядка $2m(J_z - J_{\perp})$. Как мы покажем ниже это приводит к размытию пика в туннельной плотности состояний по сравнению с изотропным случаем.

Используя тождества, $\sum_{\alpha} [Z_n - Z_n(\epsilon_{\alpha})] = nZ_n$ и $Z_n = Z_n(\epsilon_{\alpha}) + e^{-\beta\epsilon_{\alpha}}Z_{n-1}(\epsilon_{\alpha})$, можно проверить что (1.44) удовлетворяет следующему правилу сумм:

$$\int_{-\infty}^{\infty} d\varepsilon \frac{\nu(\varepsilon)}{1 + e^{\beta\varepsilon}} = T \frac{\partial \ln Z}{\partial \mu}.$$
(1.45)

1.5 Заключение

В этой главе был проделан вывод точных выражений для статистической суммы, продольной и поперечной спиновой восприимчивости и туннельной плотности состояний для произвольного спектра одночастичных возбуждений. Можно сделать следующие выводы:

1) Преобразованием Вея-Нормана-Колоколова лучше пользоваться в дискретном представлении, так как в непрерывном представлении легко можно потерять якобиан этого преобразования.

2) Анизотропия обменного взаимодействия может быть учтена при помощи интегрирования по эффективному магнитному полю.

3) Устранение нелинейных членов в действии с помощью преобразования Вея-Нормана-Колоколова представляет собой однозначную операцию.

Глава 2

Анализ для эквидистантного спектра

2.1 Введение

В этом разделе будет проведен анализ точных результатов полученных в предыдущем разделе для случая эквидистантного спектра. Конечно, строго эквидистантный спектр это идеализация, однако, цель данной работы заключается в исследовании влияния анизотропии обменного взаимодействия на мезоскопическую стоунеровскую неустойчивость. Поэтому чтобы исключить эффекты связанные с флуктуациями одноэлектронных уровней возьмем сначала простейший спектр – эквидистантный. В последствии окажется, что в случае малых флуктуаций расстояний между уровнями результаты получаются добавлением малой поправки к соответствующим результатам для эквидистантного спектра. Даже в случае больших флуктуаций определенная связь с результатами для эквидистантного спектра сохраняется.

2.2 Продольная спиновая восприимчивость

Начнем наш анализ с продольной спиновой восприимчивости. Разберем здесь два случая по соотношению параметров J_z и J_{\perp} : случай "легкой оси"при $J_z ≥ J_{\perp}$ и случай "легкой плоскости"при $J_z < J_{\perp}$. В первом случае спин квантовой точки ориентирован вдоль оси z в основном состоянии, во втором лежит в плоскости перпендикулярной оси z.

2.2.1 Случай "легкая ось": $J_z \geqslant J_\perp$

Используя интегральное представление (1.19) и (3.2) мы произведем интегрирование по h и найдем:

$$Z_{S} = \frac{1}{2} \left(\frac{\delta}{\delta - J_{z}} \right)^{1/2} e^{\frac{\beta J_{\perp}^{2}}{4(\delta - J_{\perp})}} e^{-\frac{\beta b^{2}}{4(J_{z} - J_{\perp})}} \sum_{p=\pm} F_{1} \left(\frac{\delta}{\delta - J_{\perp}} + \frac{pb}{J_{z} - J_{\perp}}, \sqrt{\beta J_{*}} \right).$$

Здесь $J_* = (\delta - J_{\perp})(J_z - J_{\perp})/(\delta - J_z)$ - это энергетический масштаб характерный для анизотропной задачи, который принимает значения в интервале от 0 (для $J_z = J_{\perp}$) и $\delta J_z/(\delta - J_z)$ (для $J_{\perp} = 0$). Функция $F_1(x, y)$ определяется следующим образом

$$F_1(x,y) = \int_{-\infty}^{\infty} \frac{dt}{\sqrt{\pi}} \frac{\operatorname{sh}(xyt)}{\operatorname{sh}(yt)} e^{-t^2}.$$
(2.1)

Используя (1.15), спиновая восприимчивость в нулевом поле может быть записана как

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{1}{2} \left(\frac{\delta - J_\perp}{\delta - J_z}\right)^2 \frac{\partial}{\partial J_*} \ln F_1\left(\frac{\delta}{\delta - J_\perp}, \sqrt{\beta J_*}\right).$$
(2.2)

При высоких температурах $T \gg \max\left\{\delta, \frac{\delta^2(J_z - J_\perp)}{(\delta - J_\perp)(\delta - J_z)}\right\}$, результат (2.2) для спиновой восприимчивости в нулевом магнитном поле может быть упрощен. В таком случае мы получаем

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{\beta}{12} \frac{(2\delta - J_\perp)J_\perp}{(\delta - J_z)^2}.$$
(2.3)

В анизотропном случае есть множество температурных интервалов с различным поведением продольной спиновой восприимчивости. При температурах $\max\left\{\delta, \frac{\delta(J_z - J_{\perp})}{(\delta - J_z)}\right\} \ll T \ll \frac{\delta^2(J_z - J_{\perp})}{(\delta - J_{\perp})(\delta - J_z)}$, мы находим

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{\beta}{4} \frac{\delta^2}{(\delta - J_z)^2}.$$
(2.4)

Для интервала температур $\max\left\{\delta, \frac{(\delta-J_{\perp})(J_z-J_{\perp})}{(\delta-J_z)}\right\} \ll T \ll \frac{\delta(J_z-J_{\perp})}{(\delta-J_z)}$, мы получаем

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{\beta}{4} \frac{J_{\perp}^2}{(\delta - J_z)^2}.$$
(2.5)

Если температура находится внутри интервала $\max\left\{\delta, \frac{J_{\perp}^2(J_z - J_{\perp})}{(\delta - J_{\perp})(\delta - J_z)}\right\} \ll T \ll \frac{(\delta - J_{\perp})(J_z - J_{\perp})}{(\delta - J_z)}$ спиновая восприимчивость в нулевом магнитном поле становится равной

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{1}{2\sqrt{\pi}} \frac{J_{\perp}\sqrt{\beta J_*}}{(\delta - J_z)(J_z - J_{\perp})}.$$
(2.6)

Наконец, для самых низких температур, $\delta \ll T \ll \min \left\{ \frac{J_{\perp}^2 (J_z - J_{\perp})}{(\delta - J_{\perp})(\delta - J_z)}, \frac{(\delta - J_{\perp})(J_z - J_{\perp})}{(\delta - J_z)} \right\}$, мы находим

$$\chi_{zz}(T) = \frac{1}{2(\delta - J_z)} + \frac{\beta}{4} \frac{J_{\perp}^2}{(\delta - J_z)^2}.$$
(2.7)

Напомним, что χ_{zz} состоит из двух вкладов (см (2.3)-(2.5) и (2.7)): вклад, который напоминает спиновую восприимчивость для ферми-жидкости, $\propto 1/(\delta - J_z)$, и вклад типа Кюри, $\propto \beta \delta^2/(\delta - J_z)^2$. Такое поведение проиллюстрировано на Рис. 2.2, где изображена зависимость продольной восприимчивости (2.2) от температуры и J_z при заданном J_{\perp}/δ . Подчеркнем, что продольная спиновая восприимчивость расходится при $J_z = \delta$ независимо от величины J_{\perp} .

Чтобы понять причину такого интересного поведения спиновой восприимчивости в нулевом поле полезно переписать (1.19) обратно в представление в виде сумм:

$$Z_{S} = \sqrt{\frac{\beta\delta}{\pi}} e^{\frac{\beta J_{\perp}^{2}}{4(\delta - J_{\perp})}} \sum_{S_{z} = -\infty}^{\infty} \sum_{S = |S_{z}|}^{\infty} \left(e^{-\beta(\delta - J_{\perp})(S - \frac{J_{\perp}}{2(\delta - J_{\perp})})^{2}} - e^{-\beta(\delta - J_{\perp})(S + 1 + \frac{J_{\perp}}{2(\delta - J_{\perp})})^{2}} \right) e^{\beta(J_{z} - J_{\perp})S_{z}^{2}}.$$
(2.8)

Здесь мы воспользовались следующим соотношением

$$Z_{n\uparrow} Z_{n\downarrow} \approx \sqrt{\frac{\beta\delta}{4\pi}} e^{-\beta\mu_n n - 2\beta\Omega_0(\mu_n)} \sqrt{\frac{\beta\delta}{\pi}} e^{-\beta\delta m^2}$$
(2.9)

которое верно при выполнении условий $\delta \ll T$ и $n \gg |m|$.

При высоких температурах $T \gg J_{\perp}^2/(\delta - J_z)$ наши результаты (2.3)-(2.7) подразумевают ферми-жидкостное поведение $\chi_{zz}(T)$. В этом интервале температур все члены кроме первого с $S = |S_z|$ в сумме по S в (2.8) сокращают друг друга. Следовательно,

$$Z_S = \sqrt{\frac{\beta\delta}{\pi}} \sum_{S_z = -\infty}^{\infty} e^{-\beta(\delta - J_z)S_z^2} = \left(\frac{\delta}{\delta - J_z}\right)^{1/2}$$
(2.10)

и $\chi_{zz}(T) = 1/[2(\delta - J_z)]$. Этот ответ подразумевает, что среднее значение S_z^2 порядка $1/[2\beta(\delta - J_z)] \gg 1$ независимо от величины J_{\perp} . В то же время среднее значение квадрата полного спина S^2 порядка $1/[2\beta(\delta - J_z)] + 1/[\beta(\delta - J_{\perp})]$. Следовательно, при $J_{\perp} \leq J_z$ полный спин сильно флуктуирует во всех трех направлениях так, что $S^2 \approx 3S_z^2$ тогда как при $J_{\perp} \ll J_z$ полный спин флуктуирует только вблизи оси z так, что $S^2 \approx S_z^2$.

Отметим наличие необычной (корневой зависимости) от температуры у спиновой восприимчивости в (2.6). Однако, результат (2.6) верен в интервале температур, который

Рисунок 2.1: Зависимость относительной поправки $[2(\delta - J_z)\chi_{zz} - 1]$ к результату Фермижидкостного типа от магнитного поля и обратной температуры, b/J_z и $\delta J_z/(\delta - J_z)T$. Здесь $J_z = 0.94\delta$ и $J_{\perp} = 0.3\delta$. [Из работы [38]]

существует только если $J_{\perp} \ll J_z \lesssim \delta$. Таким образом ограничения на температуру принимают следующий вид $\max\{\delta, J_{\perp}^2/(\delta - J_z\} \ll T \ll \delta^2/(\delta - J_z)$. Следовательно, мы можем пользоваться аргументацией из предыдущего параграфа. Для того чтобы объяснить зависимость $\sqrt{\beta}$ спиновой восприимчивости χ_{zz} нужно проделать разложение по $J_{\perp}|S_z| \sim J_{\perp}/\sqrt{\beta(\delta - J_z)}$ в уравнении (2.8).

При низких температурах $T \ll J_{\perp}^2/(\delta - J_z)$ ответы (2.3)-(2.5) и (2.7) приводят к температурной зависимости спиновой восприимчивости типа Кюри. В этом случае вторым слагаемым в скобках в правой части (2.8) можно пренебречь.Сумма по *S* может быть оценена интегралом, который набирается при $S \sim |S_z|$. Таким образом

$$Z_{S} = \sqrt{\frac{\beta\delta}{\pi}} e^{\frac{\beta J_{\perp}^{2}}{4(\delta - J_{z})}} \sum_{S_{z} = -\infty}^{\infty} \frac{e^{-\beta(\delta - J_{z})(|S_{z}| - \frac{J_{\perp}}{2(\delta - J_{z})})^{2}}}{2\beta(\delta - J_{\perp})|S_{z}| - \beta J_{\perp}}.$$
(2.11)

Это оценка приводит к типичному значению $|S_z| = J_{\perp}/[2(\delta - J_z)]$ или, иначе, к поведению спиновой восприимчивости типа Кюри: $\chi_{zz} = \beta |S_z|^2 = \beta J_{\perp}^2/[2(\delta - J_z)]^2$. Следовательно, при относительно низких температурах $\delta \ll T \ll J_{\perp}^2/(\delta - J_z)$ конфигурация с ненулевым полным спином $S = |S_z| = J_{\perp}/[2(\delta - J_z)]$ дает основной вклад в термодинамические величины.

Рисунок 2.2: Зависимость $-\frac{d \ln[\chi_{zz} - \frac{\delta}{2(\delta - J_z)}]}{d(\delta - J_z)}$ от $\ln \frac{T}{\delta}$ и $\ln \frac{\delta}{\delta - J_z}$ для $J_{\perp} = 0.3\delta$. В левом верхнем углу поведение типа Кюри доминирует. В правой нижней области поправка типа Кюри к результату ферми-жидкостного типа, $\left[\chi_{zz} - \frac{\delta}{2(\delta - J_z)}\right] \propto \frac{1}{(\delta - J_z)^2}$ мала. Красная область соответствует промежуточному режиму в котором поправка к ферми-жидкостному результату $\left[\chi_{zz} - \frac{\delta}{2(\delta - J_z)}\right] \propto \frac{1}{T^{1/2}(\delta - J_z)^{3/2}}$ из-за поперечных степеней свободы. [Из работы [38]]

Для слабых магнитных полей $b \ll \delta(J_z - J_\perp)/(\delta - J_\perp)$, продольная спиновая восприимчивость $\chi_{zz}(T, b)$ может быть хорошо приближена ответом для нулевого магнитного поля. Для более сильных $b \gg \delta(J_z - J_\perp)/(\delta - J_\perp)$, есть две области по температуре с различным поведением. В интервале температур $b(\delta - J_\perp)/(\delta - J_z) \ll T \ll b\delta/(\delta - J_z)$, продольная спиновая восприимчивость становится линейной по температуре:

$$\chi_{zz}(T,b) = \frac{1}{2(\delta - J_z)} + \frac{T}{b^2}.$$
(2.12)

При более высоких температурах $T \gg b\delta/(\delta - J_z)$, температурная зависимость продольной спиновой восприимчивости насыщается:

$$\chi_{zz}(T,b) = \frac{1}{2(\delta - J_z)}.$$
(2.13)

В пределе очень сильных магнитных полей энергия основного состояния для конфигурации с проекцией полного спина на ось z равной S_z равняется $(\delta - J_z)S_z^2 - bS_z$. Поэтому проекция полного спина в основном состоянии равна $S_z = b/[2(\delta - J_z)]$. Это позволяет нам оценивать продольную спиновую как $\chi_{zz} = dS_z/db = 1/[2(\delta - J_z)]$ в полном согласии с (2.13).

2.2.2 Случай "легкая плоскость" ($J_z < J_{\perp}$)

Используя интегральное представление (1.19) и (3.2), мы интегрируем по h и получаем

$$Z_{S} = \left(\frac{\delta}{\delta - J_{z}}\right)^{1/2} e^{\frac{\beta(J_{\perp}^{2} + b^{2})}{4(\delta - J_{\perp})}} \int_{-\pi/2}^{\pi/2} \frac{dt}{\sqrt{\pi}} e^{-\frac{t^{2}}{\beta|J_{*}|} + \frac{ibt}{\delta - J_{\perp}}} \frac{\operatorname{sh}\left(\frac{\delta(\beta b + 2it)}{2(\delta - J_{\perp})}\right)}{\sqrt{\beta|J_{*}|}\operatorname{sh}\left(\frac{\beta b + 2it}{2}\right)} \vartheta_{3}\left(e^{-\frac{\pi^{2}}{\beta(J_{\perp} - J_{z})}}, \frac{i\pi t}{\beta(J_{\perp} - J_{z})}\right).$$

$$(2.14)$$

Здесь $\vartheta_3(q,z) = \sum_m q^{m^2} e^{2imz}$ - θ -функция Якоби. Так как $T \gg \delta \ge J_\perp - J_z$, θ -функция Якоби ϑ_3 становится равной единице. Тогда для b = 0 мы находим

$$Z = \left(\frac{\delta}{\delta - J_z}\right)^{1/2} e^{\frac{\beta J_\perp^2}{4(\delta - J_\perp)}} F_2\left(\frac{\delta}{\delta - J_\perp}, \sqrt{\beta |J_*|}\right), \qquad (2.15)$$

где

$$F_2(x,y) = \int_{-\pi/2y}^{\pi/2y} \frac{dt}{\sqrt{\pi}} \frac{\sin(xyt)}{\sin(yt)} e^{-t^2}.$$
 (2.16)

При температурах $T \gg \max\left\{\delta, \frac{\delta^2(J_\perp - J_z)}{(\delta - J_\perp)(\delta - J_z)}\right\}$ мы получаем, что продольная спиновая восприимчивость дается соотношением (2.3). В интервале температур $\delta \ll T \ll \frac{\delta^2(J_\perp - J_z)}{(\delta - J_\perp)(\delta - J_z)}$, поведение χ_{zz} описывается (2.4). В случае анизотропии типа "легкая ось" переход от ферми-жидкостной к температурной зависимости типа Кюри продольной спиновой восприимчивости может быть объяснен так же как это было сделано для случая анизотропии типа "легкая ось".

Статическая продольная спиновая восприимчивость почти нечувствительна к наличию слабого магнитного поля $b \ll \delta(J_{\perp} - J_z)/(\delta - J_z)$. В обратном случае $b \gg \delta(J_{\perp} - J_z)/(\delta - J_z)$, можно пренебречь t в аргументе sh в (2.14). Тогда при $b \gg \delta(J_{\perp} - J_z)/(\delta - J_z)$ мы находим

$$Z_S = \left(\frac{\delta}{\delta - J_z}\right)^{1/2} e^{\frac{\beta J_\perp^2}{4(\delta - J_\perp)} + \frac{\beta b^2}{4(\delta - J_z)}} \frac{\operatorname{sh} \frac{\delta\beta b}{2(\delta - J_\perp)}}{\operatorname{sh} \frac{\beta b}{2}}.$$
(2.17)

Результат (2.17) означает, что для магнитного поля в интервале $(\delta - J_{\perp})T/\delta \ll b \ll T$ продольная спиновая восприимчивость описывается (2.12) тогда как $b \gg T$, χ_{zz} дается (2.13).

2.3 Поперечная спиновая восприимчивость

Как обсуждалось в разделе 2.2, для $\delta \ll T$ статистическая сумма может быть факторизована на спиновый и зарядовый сомножители (см (1.16)). Т.к. множитель Z_C не зависит от магнитного поля он не влияет на результаты для $\chi_{\perp}(\omega)$, поэтому его можно не учитывать. Это подразумевает замену Z_S , $Z_S(n)$, и $Z_S(b + i\lambda T)$ на Z, Z(n), и $Z(b + i\lambda T)$ в . (1.24) -(1.25), соответственно. Используя (2.9) для эквидистантного одночастичного спектра мы можем переписать $Z_S(n)$ следующим образом

$$Z_{S}(n) = \sqrt{\frac{\beta\delta}{\pi}} \int_{-\pi}^{\pi} \frac{d\lambda}{2\pi} e^{-i\lambda n} \sum_{m} e^{-\beta(\delta - J_{\perp})m^{2} + \beta J_{\perp}m} \operatorname{sgn}\left(2m + 1\right) \sum_{l=-|m+1/2|+1/2}^{|m+1/2|-1/2} e^{\beta(J_{z} - J_{\perp})l^{2} - \beta bl - i\lambda l}.$$
(2.18)

Далее интегрируя по λ , получаем следующие результаты

$$Z_{S}(n) = \sqrt{\frac{\beta\delta}{\pi}} e^{\beta(J_{z}-J_{\perp})n^{2}+\beta bn} \left[\sum_{m=|n|} e^{-\beta(\delta-J_{\perp})m^{2}+\beta J_{\perp}m} - \sum_{m=|n|+1} e^{-\beta(\delta-J_{\perp})m^{2}-\beta J_{\perp}m} \right].$$
(2.19)

При услови
и $\beta(\delta-J_{\perp})|n|\ll 1,$ применив формулу Эйлера-Маклорена для оценки сумм по
 m,можно найти

$$Z_{S}(n) = \frac{1}{2} \left(\frac{\delta}{\delta - J_{\perp}} \right)^{1/2} e^{\frac{\beta J_{\perp}^{2}}{4(\delta - J_{\perp})}} e^{\beta (J_{z} - J_{\perp})n^{2} + \beta bn} \sum_{s=\pm} \operatorname{erf} \left(\sqrt{\beta(\delta - J_{\perp})} \left(s|n| + \frac{J_{\perp}}{2(\delta - J_{\perp})} \right) \right) + \sqrt{\frac{\beta\delta}{\pi}} e^{-\beta(\delta - J_{z})n^{2} + \beta bn} \operatorname{ch} \left(\beta J_{\perp}|n| \right).$$

$$(2.20)$$

В обратном случае $\beta(\delta - J_{\perp})|n| \gg 1$, член с m = |n| в правой части (2.19) дает основной вклад. Тогда мы получаем

$$Z_S(n) = \sqrt{\frac{\beta\delta}{\pi}} e^{-\beta(\delta - J_z)n^2 + \beta J_\perp |n| + \beta bn}.$$
(2.21)

Отметим, что при $J_{\perp} = 0$, оба выражения (2.20) и (2.21) совпадают и верны для произвольного n.

Согласно (1.24) Im $\chi_{\perp}(\omega)$ представляется в виде суммы дельта-пиков. Т.к. их положения не зависят от конкретной реализации одночастичного спектра, дельта-пики сохраняются и после усреднения Im $\chi_{\perp}(\omega)$ по флуктуациям уровней. Поэтому, чтобы обсуждать частотную зависимость поперечной спиновой восприимчивости в виде гладкой кривой мы должны предполагать некое естественное уширение одночастичных уровней $\Gamma \gg |J_z - J_{\perp}|$.

Рисунок 2.3: Зависимость наклона $\frac{d \ln \chi_{\perp}(0)}{d\omega}$ поперечной спиновой восприимчивости от J_{\perp}/δ для $J_z = \delta/2$.

Таким образом сумма по *n* в (1.24) может быть заменена интегралом и мы получим

$$\operatorname{Im} \chi_{\perp}(\omega) = -\frac{\pi}{2|J_z - J_{\perp}|Z_S} \sum_{\sigma=\pm} \left(n + \sigma T \frac{\partial}{\partial J_{\perp}} \right) Z_S(n) \bigg|_{n = -\varpi + \sigma/2}, \qquad (2.22)$$

где $\varpi = (\omega + b)/[2(J_z - J_\perp)].$

В пределе больших частот или сильных магнитных полей, $\beta(\delta - J_{\perp})|\varpi| \gg 1$, мнимая часть поперечной спиновой восприимчивости экспоненциально мала:

$$\operatorname{Im} \chi_{\perp}(\omega) = \frac{\varpi \sqrt{\pi \beta \delta}}{|J_z - J_{\perp}| Z_S} \exp\left[-\beta(\delta - J_z)|\varpi|(|\varpi| + 1) + \beta J_{\perp}|\varpi| - \beta b\varpi\right].$$
(2.23)

В отсутствии магнитного поля, b = 0, Im χ_{\perp} является нечетной функцией частоты ω . Для $\omega \to 0$ мнимая часть поперечной спиновой восприимчивости имеет линейное поведение:

$$\operatorname{Im} \chi_{\perp}(\omega) = \frac{\omega\sqrt{\pi\beta\delta}}{2|J_z - J_{\perp}|(\delta - J_{\perp})Z_S} \left[\frac{2\delta - J_{\perp}}{2(\delta - J_{\perp})} + \frac{\sqrt{\pi}}{2\sqrt{\beta(\delta - J_{\perp})}} \Im\left(\frac{\beta J_{\perp}^2}{4(\delta - J_{\perp})}\right) \right], \quad (2.24)$$

где функция

$$\mathcal{G}(x) = (1+2x)e^x \operatorname{erf}(\sqrt{x}). \tag{2.25}$$

Наклон Im $\chi_{\perp}(\omega)$ при $\omega = 0$ имеет различное поведение при $J_{\perp} < J_z$ и при $J_{\perp} > J_z$. В интервале, $0 \leq J_{\perp} \leq J_z$ наклон растет монотонно с увеличением J_{\perp} и расходится при

Рисунок 2.4: Зависимость Im $\chi_{\perp}(\omega)/$ Im $\chi_{\perp}(\omega_{ext})$ от ω для $J_z = 0.98\delta$ и нескольких значений J_{\perp} : $J_{\perp} = 0.92\delta$ (красная сплошная линия), $J_{\perp} = 0.75\delta$ (синяя пунктирная линия) и $J_{\perp} = 0$ (зеленая линия из точек). Линия сжимается к $\omega = 0$ при приближению к изотропному случаю.

 $J_{\perp} = J_z$. В интервале $J_z < J_{\perp} < \delta$ наклон имеет минимум (см. Рис. 2.3). Мнимая часть поперечной спиновой восприимчивости при нулевом магнитном поле имеет два экстремума (минимум на отрицательных частотах и максимум на положительных частотах). При условиях $\delta - J_z, J_{\perp} \ll \delta$ и $\delta \ll T \ll \delta^2/(\delta - J_z)$ положения экстремумов могут быть оценены как

$$\omega_{\text{ext}} \approx \pm \frac{2(J_z - J_\perp)}{\sqrt{2\beta(\delta - J_z)}} \left[\left(1 + \frac{\beta J_\perp^2}{8(\delta - J_z)} \right)^{1/2} + \left(\frac{\beta J_\perp^2}{8(\delta - J_z)} \right)^{1/2} \right].$$
(2.26)

Поведение $\chi_{\perp}(\omega)$ как функиции частоты показана на Рис. 2.4. В присутствии магнитного поля Im $\chi_{\perp}(\omega)$ смещается по частоте и становится асимметричной (см Рис. 2.4).

Стоит обсудить случай изинговского обменного взаимодействия $(J_{\perp} = 0)$ более детально. В режиме малых частот и слабых магнитных полей, $|\omega|, |b| \ll TJ_z/\delta$, мнимая часть динамической спиновой восприимчивости дается выражением

$$\operatorname{Im} \chi_{\perp}(\omega) = \frac{\omega \sqrt{\pi \beta(\delta - J_z)}}{2J_z \delta} \exp\left\{-\frac{\beta [(\delta - J_z)\omega + \delta b]^2}{4J_z^2 (\delta - J_z)}\right\}.$$
(2.27)

Хотя Im $\chi_{\perp}(\omega)$ асимметрично при наличии магнитного поля она все равно обращается в нуль на нулевой частоте, Im $\chi_{\perp}(\omega = 0) = 0$. В обратном пределе $|\omega|, |b| \gg T J_z/\delta$, из (2.23) мы находим

$$\operatorname{Im} \chi_{\perp}(\omega) = \frac{(\omega+b)\sqrt{\pi\beta(\delta-J_z)}}{2J_z^2} \exp\left\{-\frac{\beta(\delta-J_z)}{2J_z}|\omega+b|\right\} \exp\left\{-\frac{\beta[(\delta-J_z)\omega+\delta b]^2}{4J_z^2(\delta-J_z)}\right\}.$$
(2.28)

В случае *b* = 0, наши результаты (2.27) и (2.28) совпадают с асимптотиками на больших и малых частотах, полученными в работе [23]. Присутствие магнитного поля приводит к сдвигу экстремумов динамической спиновой восприимчивости

$$\omega_{\text{ext}} \approx \pm \sqrt{\frac{2J_z^2}{\beta(\delta - J_z)}} \left\{ \left(1 + \frac{\beta b^2}{8(\delta - J_z)} \right)^{1/2} \mp \frac{b\sqrt{\beta}}{8\sqrt{(\delta - J_z)}} \right\}.$$
 (2.29)

2.4 Туннельная плотность состояний

2.4.1 Введение

Туннельная плотность состояний для универсального гамильтониана с осевой анизотропией исследовалась в работе [1] с помощью разложения в ряд теории возмущений вблизи случая Изинга. Было обнаружено, что обменное взаимодействие приводит к сильной немонотонной зависимости (с двумя максимумами и одним минимумом) туннельной плотности состояний от энергии. Заметим, что в случае Изинговского обменного взаимодействия [23] туннельная плотность состояний монотонна, а в случае Гейзенберговского обменного взаимодействия имеет лишь один максимум [29]. Таким образом результат работы [1] отражает интересное явление: в случае анизотропного обменного взаимодействия немонотонность туннельной плотности состояний усиливается. Однако, это предсказание находится в противоречии с недавними расчетами спиновой восприимчивости для модели с анизотропным обменным взаимодействием [38]. Спин основного состояния монотонно уменьшается с изменением анизотропии от нуля (случай гейзенберговского обменного взаимодействия), до максимального значения (случай изинговского обменного взаимодействия). В этом разделе мы детально проанализируем выражение (1.44) и покажем, что результаты работы [1] неверны.

2.4.2 Случай нулевой температуры T = 0

Начнем анализ туннельной плотности состояний (1.44) со случая низких температур $T \ll \delta$. Для простоты, рассмотрим случай кулоновской долины (N_0 близко к целому). Тогда

при $T \ll \delta$ мы можем использовать следующие соотношения:

$$Z_n \approx e^{-\beta E_n^{(0)}}, \qquad \frac{Z_n(\epsilon_\alpha)}{Z_n} \approx \Theta\left(\epsilon_\alpha - E_n^{(0)} + E_{n-1}^{(0)}\right), \tag{2.30}$$

где $E_n^{(0)}$ - это энергия основного состояния n бесспиновых электронов и $\Theta(x)$ функция Хевисайда. В случае эквидистантного спектра энергия $E_n^{(0)}$ равна $\delta n(n-1)/2$. Предположим, что основное состояние гамильтониана (1.1) с $J_z \ge J_{\perp}$ соответствует полному спину S. Тогда в (1.44) нужно учесть только вклад с m = S и $l = \pm S$. Другие вклады, например с m = S - 1 и $l = \pm (S - 1)$, будут экспоненциально подавлены. Следовательно, мы находим

$$\nu(\varepsilon) = \sum_{\epsilon_{\alpha} > \epsilon_{\frac{N_0}{2} - S}} \delta\left(\tilde{\varepsilon}_{\alpha} - J_z S - \frac{J_{\perp}}{2} + \frac{J_z}{4}\right) - \frac{1}{2S+1} \sum_{\epsilon_{\alpha} > \epsilon_{\frac{N_0}{2} + S}} \delta\left(\tilde{\varepsilon}_{\alpha} - J_z S - \frac{J_{\perp}}{2} + \frac{J_z}{4}\right) + \frac{1}{2S+1} \sum_{\epsilon_{\alpha} > \epsilon_{\frac{N_0}{2} + S}} \delta\left(\tilde{\varepsilon}_{\alpha} + (2J_{\perp} - J_z)S + \frac{J_{\perp}}{2} + \frac{J_z}{4}\right) + \sum_{\epsilon_{\alpha} > \epsilon_{\frac{N_0}{2} + S}} \delta\left(\tilde{\varepsilon}_{\alpha} + J_z S + \frac{J_{\perp}}{2} + \frac{J_z}{4}\right).$$

$$(2.31)$$

Здесь $\tilde{\varepsilon}_{\alpha} = \varepsilon + \mu - E_c - \epsilon_{\alpha}$. Удобно переписать $\epsilon_{\frac{N_0}{2}\pm S+1}$ как $\epsilon_{\frac{N_0}{2}\pm S+1} = E_{S\pm 1/2} - E_S$, где E_S одночастичный вклад в энергию основного состояния со спином S. Введем следующие обозначения:

$$\begin{aligned} \mathcal{E}_{1} &= E_{S+1/2} - E_{S} - J_{z}S - \frac{J_{\perp}}{2} - \frac{J_{z}}{4}, \\ \mathcal{E}_{2} &= E_{S-1/2} - E_{S} + J_{z}S + \frac{J_{\perp}}{2} - \frac{J_{z}}{4}, \\ \mathcal{E}_{3} &= E_{S+1/2} - E_{S} + J_{z}S + \frac{J_{\perp}}{2} - \frac{J_{z}}{4}, \\ \mathcal{E}_{4} &= E_{S+1/2} - E_{S} + (J_{z} - 2J_{\perp})S - \frac{J_{\perp}}{2} - \frac{J_{z}}{4}. \end{aligned}$$

$$(2.32)$$

Заметим, что выполнены следующие неравенства: $\mathcal{E}_3 > \mathcal{E}_{1,2,4}$ и $\mathcal{E}_1 \leq \mathcal{E}_4$ независимо от величины S. Поэтому,возможны только три различных случая: (a) $\mathcal{E}_2 < \mathcal{E}_1 < \mathcal{E}_4 < \mathcal{E}_3$, (b) $\mathcal{E}_1 < \mathcal{E}_2 < \mathcal{E}_4 < \mathcal{E}_3$, и (c) $\mathcal{E}_1 < \mathcal{E}_4 < \mathcal{E}_2 < \mathcal{E}_3$. Какой из случаев реализуется зависит от величины полного спина S в основном состоянии с $S_z = S$. Энергия \mathcal{E}_1 (\mathcal{E}_2) это энергия необходимая электрону со спином вверх(вниз) туннелировать на наинизший из доступных уровней (см Рис. 2.5). Энергия \mathcal{E}_4 и \mathcal{E}_3 требуются электрону для туннелирования электрона со спином вниз на наинизший из доступных уровней для электрона со спином вверх. Энергия \mathcal{E}_3 (\mathcal{E}_4) соответствует возбужденному состоянию с полным спином S - 1/2(S + 1/2).

Как следует из (2.31) туннелирование возможно только если энергия электрона ε превышает min{ $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ }. Из-за конечной величины полного спина в основном состоянии туннелирование электрона чувствительно к проекции его спина. При малых энергиях

Рисунок 2.5: Туннелирование электрона со спином вверх(слева) и электрона со спином вниз (справа) в квантовую точку с конечной величиной спина в основном состоянии

только электроны с одной проекцией спина могут туннелировать в квантовую точку. Для электронов с очень большими энергиями зависимости туннелирования от проекции спина нет. Характерная энергия, которая разделяет два этих режима это \mathcal{E}_3 . Правило сумм (1.45) ограничивает возможное поведение туннельной плотности состояний. Для случая кулоновской долины и при низких температурах правило сумм (1.45) приводит к тому, что интеграл $\int d\varepsilon \nu(\varepsilon)$ не зависит от обменного взаимодействия. Как мы увидим в дальнейшем, это приводит к наличию максимума в туннельной плотности состояний. В случаях (а) и (b) мы получаем из (2.31):

$$\int_{\varepsilon_{1}}^{\varepsilon_{2}} \frac{d\varepsilon}{\varepsilon_{2} - \varepsilon_{1}} \frac{\nu(\varepsilon)}{\nu_{0}} = \begin{cases} 0, & \varepsilon_{1,2} < \underline{\mathcal{E}}_{12}, \\ 1/2, & \underline{\mathcal{E}}_{12} \leqslant \varepsilon_{1,2} < \overline{\mathcal{E}}_{12}, \\ 1, & \overline{\mathcal{E}}_{12} \leqslant \varepsilon_{1,2} < \mathcal{E}_{4}, \\ \frac{4S+3}{4S+2}, & \mathcal{E}_{4} \leqslant \varepsilon_{1,2} < \mathcal{E}_{3}, \\ 1, & \mathcal{E}_{3} \leqslant \varepsilon_{1,2}, \end{cases}$$
(2.33)

где $\underline{\mathcal{E}_{12}} = \min\{\mathcal{E}_1, \mathcal{E}_2\}$ и $\overline{\mathcal{E}_{12}} = \max\{\mathcal{E}_1, \mathcal{E}_2\}$. Для случая (с) (2.31) дает

$$\int_{\varepsilon_{1}}^{\varepsilon_{2}} \frac{d\varepsilon}{\varepsilon_{2} - \varepsilon_{1}} \frac{\nu(\varepsilon)}{\nu_{0}} = \begin{cases} 0, & \varepsilon_{1,2} < \mathcal{E}_{1}, \\ 1/2, & \mathcal{E}_{1} \leqslant \varepsilon_{1,2} < \mathcal{E}_{4}, \\ \frac{S+1}{2S+1}, & \mathcal{E}_{4} \leqslant \varepsilon_{1,2} < \mathcal{E}_{2}, \\ \frac{4S+3}{4S+2}, & \mathcal{E}_{2} \leqslant \varepsilon_{1,2} < \mathcal{E}_{3}, \\ 1, & \mathcal{E}_{3} \leqslant \varepsilon_{1,2}. \end{cases}$$
(2.34)

Здесь $\nu_0 = 2 \sum_{\alpha} \delta(\varepsilon - \epsilon_{\alpha})$ обозначает туннельную плотность состояний в отсутствии взаимодействий. Энергии $\varepsilon_{1,2}$ измеряются относительно $E_c - \mu$. Схематическая зависимость огибающей туннельной плотности состояний от энергии при $T \ll \delta$ приведена на Рис. 2.6.

Как следует из (2.33) и (2.34) ступенька высотой 1/2 между \mathcal{E}_1 и \mathcal{E}_2 в огибающей плотности состояний присутствует для всех трех случаев. Однако, для основного состояния с полным спином $S \approx (J_{\perp} + J_z - \delta)/[2(\delta - J_z)]$ можно показать, что $|\mathcal{E}_1 - \mathcal{E}_2| < J_z$, таким образом эта ступенька будет размыта при $T \gtrsim \delta$. Максимум в туннельной плотности состояний имеет ширину порядка $\mathcal{E}_3 - \mathcal{E}_4 = J_{\perp}(2S+1) \sim J_{\perp}^2/(\delta - J_z)$. Поэтому, для температур в интервале $\delta \ll T \ll J_{\perp}^2/(\delta - J_z)$ можно ожидать, что этот максимум (с относительной высотой $1/(2S) \sim [\delta - J_z]/J_{\perp} \ll 1$) выживает. Заметим, что такой режим существует только при $\sqrt{\delta(\delta - J_z)} \ll J_{\perp}$.

Подчеркнем, что нуль-температурный анализ указывает на то, что туннельная плотность состояний имеет только один максимум. Дополнительных экстремумов обнаруженных в [1] с помощью вычислений, основанных на теории возмущений J_{\perp}/J_z нет.

2.4.3 Случай высоких температур $T \gg \delta$

В этом разделе проанализировано поведение туннельной плотности состояний при $T \gg \delta$. Анализ ограничен на область $J_z \ge J_{\perp}$. В режиме $T \gg \delta$, удобно оттолкнуться от интегрального представления функции Грина (А.19). При выполнении условия $\mu \gg T \gg \delta$ можно приблизить функцию Грина следующим выражением

$$G_{0\uparrow\uparrow}(\tau) = -\sum_{\alpha} \frac{e^{(\epsilon_{\alpha}-\mu)\tau}}{1+e^{\beta(\epsilon_{\alpha}-\mu)}} \approx -\frac{\pi T}{\delta} \frac{1}{\operatorname{sh}(\pi T\tau)}.$$
(2.35)

Интегрируя по ϕ_0 , h можно прийти к

Рисунок 2.6: Схематическая зависимость туннельной плотности состояния от энергии при нулевой температуре. Затененные области равны по площади (см. текст)

$$\nu(\varepsilon) = \frac{1}{Z_C} \sum_{n,p=\pm} e^{-\beta E_c (n-N_0)^2} \left\{ f_F(p\varepsilon + p\Omega_n^{-p}) + \frac{\sqrt{\pi\beta\delta}}{8Z_S} \right\}$$
$$\times \Upsilon_+ \left(\frac{p\varepsilon + p\Omega_n^{-p}}{\bar{J}_\perp}, \beta \bar{J}_\perp, \frac{J_z - J_\perp}{\delta - J_\perp}, \sqrt{\beta(J_z - J_\perp)} \right) \left\} / \sum_n e^{-\beta E_c (n-N_0)^2}$$
(2.36)

где $\Omega_n^p = \mu - E_c(2n - 2N_0 + p)$ и

$$\Upsilon_{+}(x, y, z, a) = e^{-yx/2} \int_{0}^{\infty} db \, \frac{e^{-b^{2}}}{\operatorname{sh}(ab)} \sum_{s=\pm} s$$
$$\times \int_{-\infty}^{\infty} dt \, \frac{\cos(yxt)}{\operatorname{ch}(\pi t)} \Big\{ \operatorname{erfi}\Big(sb\sqrt{z} - \sqrt{y}/2\Big) - \operatorname{erfi}\Big(sb\sqrt{z} - it\sqrt{y}\Big) \Big\} \frac{\cos(abt)}{\operatorname{ch}(ab/2)}.$$
(2.37)

Вклад в статистическую сумму за счет

$$Z_{S} = 2\left(\frac{\pi}{\beta J_{*}}\right)^{1/2} \left(\frac{\delta}{\delta - J_{z}}\right)^{1/2} e^{\frac{\beta J_{\perp}^{2}}{4(\delta - J_{\perp})}} \times \left[\mathcal{F}\left(\frac{\pi\delta}{(\delta - J_{\perp})} + \frac{\pi^{2}}{\beta J_{*}}, \frac{\pi^{2}}{\beta J_{*}}\right) - \frac{1}{2}\right], \qquad (2.38)$$

где $J_* = (\delta - J_{\perp})(J_z - J_{\perp})/(\delta - J_z).$

Используя асимптотики функции $\mathcal{F}(x, y)$,

$$\mathcal{F}(x,y) = \frac{1}{2} + \frac{1}{2} \begin{cases} \operatorname{th} \frac{x-y}{2}, & y \ll 1, \\ \operatorname{erf}(\frac{x-y}{2\sqrt{y}}), & y \gg 1, \end{cases}$$
(2.39)

и следующие соотношения

$$\partial_y \mathbb{F}(x, y, z, u) = \frac{2z}{\sqrt{\pi}} e^{z^2 y(y-1) + u^2} \mathcal{F}(x - 2yz^2, z^2 - u^2)$$
(2.40)

можно убедиться, что для случая изотропного обменного взаимодействия, $J_z = J_{\perp}$, результат (2.36) совпадает с результатом из работы [?].

Как следует из (2.39) и (2.40) функции $\mathcal{F}(x, y)$ и $\mathbb{F}(x, y, z, u)$ лишь немного отклоняются от функции Ферми $f_F(x) = 1/(1 + \exp(x))$ при $y, z, u \ll 1$. Хотя u всегда мало, параметры yи z могут быть велики для J_{\perp} близкого к δ при температурах $(\delta + J_{\perp})^2/[4(\delta - J_{\perp}) \gg T \gg \delta$. Зависимость туннельной плотности состояний от энергии показана на Рис. 2.7. Можно заметить, что максимум имеет заметную величину при ненулевых J_{\perp} и температурах $T \leq (\delta + J_{\perp})^2/[4(\delta - J_{\perp})]$. Наличие максимума находится в согласии с нуль-температурным анализом предыдущего раздела. Для Рис. 2.7 выбраны в точности параметры из Рис. 2 работы. [?]. Отсутствие дополнительных немонотонностей противоречит результатам работы [?] выполненной по теории возмущений по параметру J_{\perp}/J_z .

2.5 Заключение

В этой главе были исследованы статистическая сумма, продольная и поперечная спиновая восприимчивость и туннельная плотность в случае эквидистантного одночастичного спектра квантовой точки. Можно сделать следующие выводы:

 При высоких температурах зависимость спиновой восприимчивости от температуры фермижидкостная, а при низких типа Кюри. При этом есть промежуточная область температур при которой зависимость от температуры становится корневой.

2)Мнимая часть поперечной спиновой восприимчивости при нулевом магнитном поле представляет собой нечетную функцию с одним минимумом и максимумом. С приближением к изотропному случаю ширина пиков уменьшается. Магнитное поле приводит к сдвигу пиков. Однако, при нулевой частоте мнимая часть восприимчивости остается нулевой.

3) Туннельная плотность состояний имеет немонотонность в виде одного пика. Величина этого пика увеличивается с приближением к изотропному случаю и с уменьшением

Рисунок 2.7: Туннельная плотность состояний в кулоновской долине. Штриховая лиловая кривая соответствует $J_z = J_{\perp} = 0$. Точечная синяя кривая соответствует $\delta/T = 0.11$, $J_z/\delta = 0.91$, и $J_{\perp}/\delta = 0.82$. Сплошная синяя кривая соответствует $\delta/T = 0.97$, $J_z/\delta = 0.93$, и $J_{\perp}/\delta = 0.76$.

температуры. Пик исчезает в случае изинговского обменного взаимодействия. Дополнительных немонотонностей предсказанных в [1] не обнаружено.

Глава 3

Учет флуктуаций одночастичного спектра

3.1 Введение

В этом разделе мы будем изучать поправки к результатам из предыдущей главы за счет флуктуаций одночастичного спектра. Как объяснялось выше гамильтониан (1.1) описывает квантовую точку в нуль-мерном приближении только для изинговского или гейзенберговского обменного взаимодействия. Поэтому разумно изучить влияние флуктуаций на полученные выше результаты при $J_{\perp} = 0$ и $J_{\perp} = J_z$. Мы начнем со случая изинговского обменного взаимодействия. Особое внимание будет уделено вопросу о влиянии флуктуаций на стоунеровскую неустойчивость. Известно [10, 16], что при определенных условиях беспорядок (выражающийся в нашем случае, в частности, через флуктуации одночастичного спектра) может привести к смещению перехода Стоунера. Изучение вопроса о смещении перехода Стоунера сводится к вопросу о сходимости спиновой восприимчивости и её моментом. В этой главе мы не исследуем туннельную плотность состояний так как известно, что случае изотропного обменного взаимодействия [29] флуктуации одночастичных уровней не влияют существенно на туннельную плотность состояний.

3.2 Учет флуктуаций для восприимчивости в случае Изинга

3.2.1 Продольная спиновая восприимчивость

Функция

$$\beta \sum_{\sigma} [\Omega_0(\tilde{\mu}) - \Omega_0(\tilde{\mu} + h\sigma/\beta)] = \int_{-\infty}^{\infty} dE \,\nu_0(E) \,\ln\left[1 + \frac{\operatorname{sh}^2(h/2)}{\operatorname{ch}^2(E/2T)}\right]$$
(3.1)

которая возникает в (1.19) зависит от конкретной реализации одночастичного спектра через одночастичную плотность состояний $\nu_0(E) = \sum_{\alpha} \delta(E + \tilde{\mu} - \epsilon_{\alpha})$. При условии $h^2 \ll \exp(\beta \tilde{\mu})$, мы можем написать

$$\beta \sum_{\sigma} \left[\Omega_0(\tilde{\mu}) - \Omega_0(\tilde{\mu} + h\sigma/\beta) \right] = \frac{h^2}{\beta\delta} - V(h), \qquad (3.2)$$

где

$$V(h) = -\int_{-\infty}^{\infty} dE \,\delta\nu_0(E) \,\ln\left[1 + \frac{\sinh^2(h/2)}{\ch^2(E/2T)}\right].$$
(3.3)

Здесь $\delta\nu_0(E)$ - отклонение плотности состояний $\nu_0(E)$ от его среднего значения по всем реализациям одночастичного спектра: $1/\delta = \overline{1/\Delta} = \overline{\nu_0(E)}$.

Для упрощения результата (1.19) в случае изинговского обменного взаимодействия удобно сделать замену переменных $\mathcal{B} \to \mathcal{B} - 2h(J_z - J_\perp)T/J_z$, чтобы взять предел $J_\perp \to 0$ и, далее, проинтегрировать по \mathcal{B} . Таким образом находим

$$Z_S = \left(\frac{\delta}{\delta - J_z}\right)^{1/2} e^{\frac{\beta b^2}{4(\delta - J_z)}} \Xi \left(\frac{b}{J_z}, \frac{\beta J_z \delta}{\delta - J_z}\right), \qquad (3.4)$$

где

$$\Xi(x,y) = \int_{-\infty}^{\infty} \frac{dh}{\sqrt{\pi}} e^{-h^2 - V(h\sqrt{y} + xy/2)}.$$
(3.5)

Информация о флуктуациях одночастичного спектра заключена в четной случайной функции V(h) через плотность состояний (см (3.3)). Напомним, что одночастичная плотность состояний $\nu_0(E)$ имеет негауссову статистику [41]. Однако, при $\max\{|h|, T/\delta\} \gg 1$ функция V(h) - это гауссова случайная величина с нулевым средним [41]. Двухточечная корреляционная функция величины V может быть записана следующим образом :

$$\overline{V(h_1)V(h_2)} = \sum_{\sigma=\pm} L(h_1 + \sigma h_2) - 2L(h_1) - 2L(h_2),$$
$$L(h) = \frac{2}{\pi^2 \beta} \int_0^{|h|} dt \, t \, \left[\operatorname{Re} \psi \left(1 + \frac{it}{2\pi} \right) + \gamma \right].$$
(3.6)

Здесь $\psi(z)$ - это дигамма-функция Эйлера и $\gamma = -\psi(1)$ это константа Эйлера-Маскерони. Для случая изинговского обменного взаимодействия, параметр β в (3.6) равняется $\beta = 2$ т.к. уровни энергии ϵ_{α} в гамильтониане (1.1) описываются унитарным ансамблем Вигнера-Дайсона (класс А). [21] Асимптотики L(h) имеют следующий вид: [29]

$$L(h) = \frac{4}{\beta} \left(\frac{h}{2\pi}\right)^2 \begin{cases} \frac{\zeta(3)}{2} \left(\frac{h}{2\pi}\right)^2 - \frac{\zeta(5)}{3} \left(\frac{h}{2\pi}\right)^4, & \frac{|h|}{2\pi} \ll 1, \\ \ln\frac{|h|}{2\pi} + \gamma - \frac{1}{2}, & \frac{|h|}{2\pi} \gg 1. \end{cases}$$
(3.7)

3.2.2 Поправки по теории возмущений к $\overline{\chi}_{zz}$ при слабых флуктуациях

Согласно (3.4), средняя продольная спиновая восприимчивость $\overline{\chi}_{zz}$ определяется величиной $\overline{\ln \Xi(x, y)}$. Хотя V(h) это гауссова случайная величина математически строго вычислить $\overline{\ln \Xi(x, y)}$ для произвольных x и y сложно. Мы начнем с теории возмущений по корреляционной функции $\overline{V(h)V(h')}$. Разлагая выражение (3.4) для $\Xi(x, y)$ до второго порядка по V и усредняя $\ln \Xi(x, y)$ с помощью (3.6), мы находим

$$\overline{\ln\Xi(x,y)} = \int_{0}^{\infty} \frac{du}{\sqrt{\pi}} e^{-u^2} \Big[e^{-x^2y/4} \operatorname{ch}(ux\sqrt{y}) L(2u\sqrt{y}) - \left(e^{-x^2y/2} \operatorname{ch}(ux\sqrt{2y}) + 1\right) L(u\sqrt{2y}) \Big].$$
(3.8)

Есть три области с различным поведением $\overline{\ln \Xi(x, y)}$. Они показаны на Рис. 3.1. Удобно ввести перенормированную константу обменного взаимодействия $\bar{J}_z = \delta J_z / (\delta - J_z)$.

В области I, $\bar{J}_z \max\{1, (b/J_z)\} \ll T$, аргументы $\Xi(x, y)$ удовлетворяют условию: $y \ll \min\{1, 1/x\}$. Последнее позволяет использовать асимптотику L(h) при $|h| \ll 1$ (см (3.7)). Тогда мы находим

$$\overline{\ln\Xi(x,y)} = \frac{3\zeta(3)y^2}{8\pi^4\beta} \Big[1 + yx^2 - \frac{5\zeta(5)y}{2\pi^2\zeta(3)} \Big(1 + \frac{3}{2}yx^2 + \frac{y^2x^4}{6} \Big) \Big].$$
(3.9)

Следовательно мы получаем следующий ответ для средней продольной спиновой восприимчивости при температурах $T \gg \bar{J}_z \max\{1, (b/J_z)\}$:

$$\overline{\chi}_{zz} = \frac{1}{2(\delta - J_z)} + \frac{3\zeta(3)}{4\pi^4 \beta} \frac{\delta^3 J_z}{(\delta - J_z)^3 T^2} - \frac{45\zeta(5)}{16\pi^6 \beta} \frac{\delta^4 J_z^2}{(\delta - J_z)^4 T^3} \left[1 + \frac{2}{3} \frac{\delta b^2}{J_z T(\delta - J_z)} \right].$$
(3.10)

В области I поправки к продольной спиновой восприимчивости всегда малы и следовательно теория возмущений оправдана. Приведем более прозрачный способ вывода (3.10). Во-первых можно заменить термодинамическую плотность состояний на уровне Ферми $1/\Delta = -\frac{\partial^2 \Omega_0(\mu)}{\partial \mu^2}\Big|_{\mu=\mu_n}$ вместо $1/\delta$ в выражении (2.3) (при $J_{\perp} = 0$) для эквидистантного спектра. Во-вторых, разложим χ_{zz} до второго по отклонению $\Delta - \delta$. Наконец, можно провести усреднение с помощью соотношения [29]

$$\overline{(\Delta-\delta)^2} = \frac{3\zeta(3)}{2\pi^4 \beta} \frac{\delta^4}{T^2}, \qquad \delta \ll T$$
(3.11)

и получить результат (3.10) (при b = 0).

В области II, $\bar{J}_z \gg T \gg \max\{\delta, \bar{J}_z(b/J_z)^2\}$, можно провести разложение по x^2y в правой части (3.8), т.к. выполняется следующее соотношение $1 \ll y \ll 1/x^2$. Однако аргументы L велики нам следует пользоваться асимптотикой $|h| \gg 1$ (см. (3.7)). Тогда мы получаем

$$\overline{\ln \Xi(x,y)} = \frac{y \ln 2}{4\pi^2 \beta} (2 + yx^2) - \frac{y^3 x^4}{48\pi^2 \beta}.$$
(3.12)

Следовательно средняя продольная спиновая восприимчивость в области II $(\bar{J}_z \gg T \gg \max\{\delta, \bar{J}_z(b/J_z)^2\})$ такова

$$\overline{\chi}_{zz} = \frac{1}{2(\delta - J_z)} + \frac{\ln 2}{2\beta\pi^2} \frac{\delta^2}{T(\delta - J_z)^2} - \frac{1}{4\pi^2\beta} \frac{\delta^3 b^2}{J_z(\delta - J_z)^3 T^2}.$$
(3.13)

При нулевых магнитных полях мы убеждаемся, что вклад второго порядка по L в $\overline{\ln \Xi(0, y)}$ имеет порядок $(y/(\pi^2 \beta))^2$. Следовательно, теория возмущений по двухточечной корреляционной функции величины V оправдана только при $T \gg \overline{J}_z/(\pi^2 \beta)$. В этой области дисперсия χ_{zz} мала $[(\chi_{zz})^2 - \overline{\chi}_{zz}^2]/\overline{\chi}_{zz}^2 \sim \overline{J}_z/(\pi^2 \beta T) \ll 1$. Поэтому, при $T \gg \overline{J}_z/(\pi^2 \beta)$ можно ожидать нормальное распределение χ_{zz} .

Наконец, в области III, $\delta \ll T \ll \bar{J}_z \min\{(b/J_z), (b/J_z)^2\}$, типичное значение u дающее существенный вклад в интеграл в правой части (3.8) может быть не только порядка единицы но и порядка $x\sqrt{y} \gg 1$. В последнем случае, т.к. $yx \gg 1$ нужно использовать асимптотику для L(h) при $|h| \gg 1$ (см (3.7)). Следовательно мы находим

$$\overline{\ln\Xi(x,y)} = \frac{y}{2\pi^2\beta} \left(\ln\frac{|x|y}{2} + c_2 \right) - \int_0^\infty \frac{du}{\sqrt{\pi}} e^{-u^2} L(u\sqrt{2y}).$$
(3.14)

Рисунок 3.1: Различные области поведения относительной поправки к $\overline{\chi}_{zz}$ из-за флуктуаций для случая изинговского обменного взаимодействия в координатах: безразмерное магнитное поле и обратная температура, b/J_z и $\delta J_z/T(\delta - J_z)$. Заметим, что в нашем анализе мы предполагаем $T \gg \delta$.

Откуда мы получаем среднюю продольную спиновую восприимчивость в области III ($\delta \ll T \ll \bar{J}_z \min\{(b/J_z), (b/J_z)^2\}$):

$$\overline{\chi}_{zz} = \frac{1}{2(\delta - J_z)} - \frac{1}{2\beta\pi^2} \frac{\delta J_z}{(\delta - J_z)b^2}.$$
(3.15)

Для магнитных полей $b \gg J_z$ эффект флуктуаций уровней подавлен и теория возмущений оправдана. При $b \sim J_z \sqrt{T/\bar{J_z}} \ll J_z$ результат (3.15) плавно переходит в результат (3.10), тогда как при $T \sim \bar{J_z}b/J_z \gg \bar{J_z}$ поправки за счет флуктуаций уровней в выражениях (3.15) и (3.13) становятся одного порядка.

Результаты (3.13) и (3.15) демонстрируют немонотонную зависимость продольной спиновой восприимчивости с магнитным полем *b* в интервале температур $\bar{J}_z/(\pi^2\beta) \ll T \ll \bar{J}_z$ (см Рис. 3.2). Зависимость $\bar{\chi}_{zz}(b)$ имеет минимум при $b \sim TJ_z/\bar{J}_z$. В области сильных флуктуаций $\delta \ll T \ll \bar{J}_z/(\pi^2\beta)$ мы ожидаем подобное поведение среднего от продольной спиновой восприимчивости.

Хотя результат (3.15) получен при $T \gg \delta$, для $\delta - J_z \ll J_z$ он может быть получен из следующих нуль-температурных рассуждений. Разница между энергиями основных

Рисунок 3.2: Зависимость относительной поправки $\delta \chi_{zz} = \overline{\chi}_{zz} - 1/[2(\delta - J_z)]$ из-за флуктуаций от b/J_z (см (3.13) и (3.15)). Температура равна $T = \delta J_z/[6(\delta - J_z)]$.

состояний с проекциям
и $S_z + 1$ и S_z полного спина может быть оценена как

$$E_g(S_z+1) - E_g(S_z) = 2(\delta - J_z)S_z - bS_z + \Delta E_{2S_z}.$$
(3.16)

Здесь ΔE_{2S_z} это флуктуации окна энергий в котором находится в среднем $2S_z$ уровней. Они могут быть выражены как $\Delta E_{2S_z} = \delta \Delta n_{2S_z}$ где Δn_{2S_z} это флуктуации числа одночастичных уровней в полосе из $2S_z$ уровней в среднем. Из теории случайных матриц известно, что [41]

$$\overline{(\Delta n_{2S_z})^2} = \frac{2}{\pi^2 \beta} \Big[\ln 2S_z + \text{const} \Big].$$
(3.17)

Сравнивая энергии основных состояний с проекциями полного спина $S_z + 1$ и S_z , мы находим из (3.16)

$$S_z = \frac{1}{2(\delta - J_z)} \Big[b - \delta \,\Delta n_{2S_z} \Big]. \tag{3.18}$$

Следовательно средняя продольная спиновая восприимчивость может быть оценена как

$$\overline{\chi}_{zz} \sim \frac{\partial \overline{S}_z}{\partial b} = \frac{1}{2(\delta - J_z)} \left[1 + \frac{\delta^2}{2(\delta - J_z)^2} \frac{d^2 \overline{(\Delta n_z)^2}}{dz^2} \right],$$
(3.19)

где $z = 2\overline{S}_z \approx b/(\delta - J_z)$. Таким образом, (3.17), мы воспроизводим результат (3.15).

3.2.3 Функция распределения χ_{zz}

Средняя продольная спиновая восприимчивость наиболее подвержена влиянию флуктуаций уровней в области II ($\bar{J}_z \gg T \gg \bar{J}_z (b/J_z)^2$). Пертурбативный результат (3.10) становится неприменим при $\bar{J}_z/(\pi^2 \beta) \gg T \gg \delta$. Такой режим осуществляется вблизи стоунеровской неустойчивости $\delta - J_z \ll \delta/(\pi^2 \beta)$. В этом случае сильных флуктуаций полезно знать функцию распределения χ_{zz} , а не только среднее значение.

В интервале температур $\delta \ll T \ll \bar{J}_z$, интеграл в правой части (3.5) набирается в основном на больших значениях |h|. Тогда используя асимптотическое выражение (3.7), можно убедиться, что для $|h_1|, |h_2| \gg 1$ двухточечная корреляционная функция(3.6) является однородной функцией порядка два: [22]

$$\overline{V(uh_1)V(uh_2)} = u^2 \overline{V(h_1)V(h_2)}.$$
(3.20)

При помощи (3.20), в нулевом магнитном поле b = 0 и для $\delta \ll T \ll \bar{J}_z/(\pi^2 \beta)$, выражения (3.4) и (3.5) могут быть упрощены:

$$Z_S = \left(\frac{\delta}{\delta - J_z}\right)^{1/2} \int_{-\infty}^{\infty} \frac{dh}{\sqrt{\pi}} e^{-h^2 - zv(h)}.$$
(3.21)

Напомним, что нормировка такова, что $Z_S = 1$ при $J_z = 0$. Согласно (1.9) для $J_{\perp} = b = 0$, статистическая сумма большого канонического ансамбля увеличивается с ростом J_z . Отсюда следует, что $Z_S \ge 1$. Согласно (3.21), статистика продольной спиновой восприимчивости при нулевом магнитном поле определяется единственным параметром $z = [\beta \bar{J}_z/(\pi^2 \beta)]^{1/2}$. Случайный гауссов процесс v(h) имеет нулевое среднее и четен по h, v(h) = v(-h). Его двухточечная корреляционная функция такова

$$\overline{v(h_1)v(h_2)} = \frac{1}{2} \sum_{\sigma=\pm} (h_1 + \sigma h_2)^2 \ln(h_1 + \sigma h_2)^2 - h_1^2 \ln h_1^2 - h_2^2 \ln h_2^2.$$
(3.22)

Следовательно

$$\overline{\left[v(h+u) - v(h)\right]^2} = -2u^2 \ln|u| + O(u^2) = O(u^{2H})$$
(3.23)

для всех $H = 1 - \epsilon < 1$. Таким образом траектории v(h) непрерывны и его инкременты сильно положительно коррелированы (см Рис. 3.3). На деле процесс v(h) во многих аспектах близок к баллистическому $\tilde{v}(h) = \xi |h|$, где ξ это гауссова случайная величина (напомним, что $\tilde{v}(h)$ это единственный процесс, удовлетворяющий условию (3.23) при H = 1). Процесс v(h) известен в математической литературе [5].

Рисунок 3.3: Несколько реализаций процесса v(h); пунктирные линии $\pm 2h\sqrt{\ln 2}$ приведены для наглядности.

Будем искать функцию распределения $\mathcal{P}(W)$, т.е. вероятность для $\ln Z_S$ превысить W: $\mathcal{P}(W) \equiv \mathsf{P}\{\ln Z_S > W\}$. Она имеет следующие свойства: $\mathcal{P}(0) = 1$, $\mathcal{P}(\infty) = 0$ и $\mathcal{P}(W)$ монотонно убывающая функция. Средние моменты $\ln Z_S$ могут быть просто переписаны как $\overline{[\ln Z_S]^k} = k \int_0^\infty dW W^{k-1} \mathcal{P}(W)$. Хотя аналитическое выражение для функции распределения неизвестно мы можем ограничить $\mathcal{P}(W)$ сверху чтобы доказать, что все моменты χ_{zz} конечны при $J_z < \delta$. Во первых, мы разбиваем гауссов вес $\exp(-h^2)$ в интеграле в правой части (3.4) и получаем ($0 < \gamma < 1$ это прозвольный параметр разбиения). Тогда,

$$Z_S \leqslant \frac{2\sqrt{\bar{J}_z}}{\sqrt{\pi\gamma J_z}} \int_0^\infty dh \, e^{-(1-\gamma)h^2/\gamma} \max_{h\geqslant 0} \Big\{ e^{-h^2 - zv(h)/\sqrt{\gamma}} \Big\}.$$
(3.24)

Неравенство (3.24) позволяет нам свести задачу нахождения верхней границы для $\mathcal{P}(W)$ к статистике максимумов гауссового процесса $Y_{\gamma}(h) = -h^2 - (z/\sqrt{\gamma})v(h)$ который локально напоминает дробное броуновское движение с дрейфом. Действительно, из (3.24) мы находим

$$\mathcal{P}(W) \leqslant \mathsf{P}\Big\{\max_{h \ge 0} Y_{\gamma}(h) > W + \frac{1}{2} \ln \frac{(1-\gamma)J_z}{\bar{J}_z}\Big\}.$$
(3.25)

Чтобы найти верхнюю границу к вероятности $\mathsf{P}\{\max_{h \ge 0} Y_{\gamma}(h) > w\}$, мы используем неравенства Слепиана. [6] Рассмотрим произвольный гауссов процесс $X(h) = -h^2 + (2z\sqrt{\ln 2}/\sqrt{\gamma})B(h^2)$, где B(h) это стандартное броуновское движение ($\overline{B(h)} = 2h$; с экспонентой Херста H = 1/2). Для любого интервала \mathfrak{T} пути $\{X(h), h \in \mathfrak{T}\}$ и $\{Y_{\gamma}(h), h \in \mathfrak{T}\}$ ограничены. Выполняются следующие соотоношения:

$$\overline{X(h)} = \overline{Y_{\gamma}(h)}, \qquad \overline{X^2(h)} = \overline{Y_{\gamma}^2(h)},$$
$$\overline{[X(h_1) - X(h_2)]^2} \ge \overline{[Y_{\gamma}(h_1) - Y_{\gamma}(h_2)]^2}.$$
(3.26)

Действительно, первые два равенства очевидным образом выполнены, тогда как последнее неравенство следует из легко проверяемого неравенства $\overline{[v(1/2+r)-v(1/2-r)]^2} \leq 8r \ln 2$ для $|r| \leq 1/2$. Тогда процессы $Y_{\gamma}(h)$ и X(h) удовлетворяют неравенству Слепиана:

$$\mathsf{P}\{\max_{h \ge 0} Y_{\gamma}(h) > w\} \leqslant \mathsf{P}\{\max_{h \ge 0} X(h) > w\}$$
(3.27)

для всех вещественных *w*. Используя известный результат для броуновского движения с линейным дрейфом (см например, [19])

$$\mathsf{P}\{\max_{h \ge 0} X(h) > w\} = \exp\left(-\frac{\gamma w}{2z^2 \ln 2}\right), \quad w > 0, \tag{3.28}$$

мы находим следующую верхнюю границу для функции распределения

$$\mathcal{P}(W) \leqslant \exp\left\{-\frac{\gamma}{2z^2 \ln 2} \left[W + \frac{1}{2} \ln \frac{(1-\gamma)J_z}{\bar{J}_z}\right]\right\}.$$
(3.29)

Из (3.29) следует что при $\bar{J}_z/(\pi^2\beta) \gg T \gg \delta$ все моменты $\ln Z_S$ (и следовательно все моменты χ_{zz}) конечны если $J_z < \delta$. Поэтому даже в присутствии сильных флуктуаций одночастичных уровней стоунеровская неустойчивость проявляется только при $J_z = \delta$. Для $J_z < \delta$ и для температур $T \gg \delta$ квантовая точка находится в парамагнитном состоянии.

Для $z \gg 1$ седловое приближение в (3.4) становится точным и статистика $\ln Z_S$ сводится к статистике максимумов процесса $Y(h) = -h^2 - zv(h)$. Как видно из перенормировки h, вероятность того что максимум Y(h) превышает w равна вероятности того, что максимум величины $\widetilde{Y}(s) = v(s)/(1+s^2)$ определенной при $s \ge 0$ превышает \sqrt{w}/z . Из результатов Хюслера и Питербарга [43] следует, что асимптотика вероятности $\mathsf{P}\{\max_{h\ge 0} Y(h) > w\}$ при больших w определяется малой окрестностью точки $s^* = 1$, где вариация $\widetilde{Y}(s)$ достигает своего максимума, равного $\ln 2$. Более того, имеется конечный предел

$$\lim_{s,t\to s_*} \frac{[\tilde{Y}(s) - \tilde{Y}(t)]^2}{K^2(s-t)} > 0$$
(3.30)

для некоторой функции K(x) регулярно изменяющейся вблизи нуля 0 с индексом $\alpha \in (0, 1)$. Тогда точная асимптотика имеет вид

$$\mathsf{P}\{\max_{h \ge 0} Y(h) > W\} \sim \operatorname{const}(\alpha) \cdot \frac{(z^2/W)^{-1}}{K^{-1}(\sqrt{z^2/W})} \exp\left[-\frac{W}{2z^2 \ln 2}\right], \quad W/z^2 \gg 1.$$
(3.31)

Здесь $K^{-1}(x)$ функциональное обратное от K(x). В нашем случае, (3.23) означает, что $K(x) = x\sqrt{\ln(1/x)}$, которая регулярна с индексом $\alpha = 1$. Напомним, что функция f(x) регулярна в x = 0 с индексом α если $\lim_{t\to 0} f(at)/f(t) = a^{\alpha}$ для любого a > 0. Результат работы [43],строго говоря, не применим напрямую. По аналогии с похожей ситуацией при дробном броуновском движении, мы ожидаем, что асимптотика (3.31) сохранится лишь с изменением независящего от W множителя $const(\alpha)$. Заметим, что экспоненциальная часть напоминает хвост нормального распределения с дисперсией $\ln 2$ взятый при \sqrt{W}/z . Этот хвост был верно оценен с помощью неравенства Слепиана. Таким образом мы находим, что с логарифмической точностью хвост функции распределения дается выражением $(W \gg [\ln 2/(\pi^2 \beta)]\delta J_z/[T(\delta - J_z)])$

$$\mathcal{P}(W) \propto \mathcal{P}_{\text{tail}}\left(\frac{\pi^2 \boldsymbol{\beta} T(\delta - J_z) W}{\delta J_z}\right), \mathcal{P}_{\text{tail}}(x) \qquad = \frac{\sqrt{\ln x}}{\sqrt{x}} \exp\left(-\frac{x}{2\ln 2}\right). \tag{3.32}$$

Этот результат верен в интервале температур $\bar{J}_z/(\pi^2 \beta) \gg T \gg \delta$ и согласован с оценкой сверху (3.29).

Чтобы проиллюстрировать результат (3.32) мы приблизим гауссов процесс v(h) вырожденным процессом $\tilde{v}(h) = \xi |h|$, где ξ это гауссов случайный процесс с нулевым средним $\overline{\xi} = 0$ и дисперсией $\overline{\xi^2} = 4 \ln 2$. Заменяя процессом $\tilde{v}(h)$ процесс v(h) в правой части уравнения (3.21), мы оцениваем статистическую функцию как $Z_S \simeq \sqrt{J_z/J_z} \exp(z^2\xi^2/4) \Big[1 - erf(z\xi/2) \Big]$. Большие значения Z_S соответствуют большим отрицательным значениям ξ таким, что $\ln Z_S \approx z^2\xi^2/4$. Поэтому, хвост распределения $\ln Z_S$ это простая экспонента. Далее мы находим что для $z \gg 1$ хвост функции распределения $\mathcal{P}(W)$ дается (3.32) без логарифма в предэкспоненте. Как показано на Рис. 3.4 в целом поведение $\mathcal{P}(W)$ при $z \gg 1$ хорошо приближается функцией распределения для вырожденного процесса $\tilde{v}(h)$. Также заметим что поведение $\mathcal{P}(W)$ для $z \gg 1$ сильно отличается от его поведения при $z \lesssim 1$. Для последнего, $\mathcal{P}(W)$ дается функцией распределения нормального распределения (см Рис. 3.4).

Уравнение (3.32) показывает, что средние моменты $\ln Z_S$ масштабируются как $\overline{(\ln Z_S)^k} \sim z^{2k}$ при $z \gg 1$. Следовательно при $\delta \ll T \ll \overline{J_z}/(\pi^2 \beta)$ k-ый момент спиновой восприимчивости дается выражением

$$\overline{\chi_{zz}^k} \propto \left[\frac{\delta^2}{\pi^2 \boldsymbol{\beta} (\delta - J_z)^2 T}\right]^k, \quad k = 1, 2, \dots$$
(3.33)

Результат (3.33) может быть получен из седлового приближения для интеграла в правой части (3.21), т.е., в сущности, с помощью аргументов типа Ларкина-Имри-Ма. [11, 12]

Рисунок 3.4: Зависимость $\mathcal{P}(W)$ от W/z^2 при $T = 3\delta$ полученная с помощью численных расчетов при $J_z/\delta = 0.94$ ($z \approx 0.5$) (верхняя линия) и $J_z/\delta = 0.99994$ ($z \approx 16.8$) (нижняя линия). Черная кривая из точек это функция распределения для нормального распределения со средним и дисперсией найденными из теории возмущений низшего порядка по V для $T = 3\delta$ и $J_z/\delta = 0.94$. Красная пунктирная линия это функция распределения вырожденного процесса $\tilde{v}(h)$ для $T = 3\delta$ и $J_z/\delta = 0.99994$. Вставка: Сравнение хвоста $\mathcal{P}(W)$ полученного численно $J_z/\delta = 0.99994$ ($z \approx 16.8$) и асимптотического результата (3.32).

Зависимость средней продольной спиновой восприимчивости ((3.33) с k = 1) была предложена в [22], с использованием аргументов типа Ларкин-Имри-Ма.

3.2.4 Поперечная спиновая восприимчивость

Ниже мы рассмотрим как флуктуации влияют на динамическую спинвую восприимчивость в случае изинговского обмена. Как мы увидим ниже влияние флуктуаций уровней на Im $\chi_{\perp}(\omega)$ в большинстве случаев мало. Так как эффект флуктуаций уровней подавляется магнитным полем, ниже мы рассмотрим только случай b = 0.

Мы начнем с обобщения (2.9) для произвольного спектра:

$$Z_{n\uparrow} Z_{n\downarrow} \approx \sqrt{\frac{\beta\delta}{4\pi}} e^{-\beta\mu_n n - 2\beta\Omega_0(\mu_n)} \int_{-\infty}^{\infty} \frac{d\theta}{\pi} e^{-2mi\theta} e^{-\frac{\theta^2}{\beta\delta} - V(i\theta)}.$$
(3.34)

С помощью . (1.23), (2.22) и (3.34) мы перепишем мнимую часть динамической спиновой

восприимчивости следующим образом

$$\operatorname{Im} \chi_{\perp}(\omega) = -\frac{\sqrt{\pi\beta(\delta - J_z)}}{2J_z} \sum_{\sigma=\pm} e^{\beta J_z n^2} \left[\sum_{m=|n|+1}^{\infty} 2\sigma m \right]$$
$$\times e^{-\beta \delta m^2} F_{\chi}\left(m, \beta \delta, \frac{\beta \delta J_z}{\delta - J_z}\right) + (n + \sigma |n|) e^{-\beta \delta n^2}$$
$$\times F_{\chi}\left(|n|, \beta \delta, \frac{\beta \delta J_z}{\delta - J_z}\right) \left| \right|_{n=(\sigma J_z - \omega)/(2J_z)}.$$
(3.35)

Здесь случайная функция

$$F_{\chi}(m,x,y) = \frac{\int_{-\infty}^{\infty} d\theta \, e^{-\theta^2 - V\left(xm + i\theta\sqrt{x}\right)}}{\int_{-\infty}^{\infty} dh \, e^{-h^2 - V\left(h\sqrt{y}\right)}}$$
(3.36)

равна единице в отсутствии флуктуаций уровней (для V = 0).

Разлагая правую часть (3.36) до второго порядка по V мы находим

$$\overline{F_{\chi}(m)} = \int_{-\infty}^{\infty} \frac{dh_1 dh_2}{\pi} e^{-h_1^2 - h_2^2} \Biggl\{ 1 + \frac{1}{2} L \left(2xm + 2ih_1 \sqrt{x} \right) - 2L \left(xm + ih_1 \sqrt{x} + h_2 \sqrt{y} \right) - \frac{1}{2} L \left(2h_1 \sqrt{y} \right) + 2L \left(h_1 \sqrt{y} + h_2 \sqrt{y} \right) \Biggr\}.$$
(3.37)

В режиме высоких температур, $T \gg \delta J_z/(\delta - J_z)$, и для $|m| \ll T/\delta$, все три интеграла в правой части (3.37) одного порядка малости. Используя асимптотическое выражение (3.7) для функции L(h) при $|h| \ll 1$, мы получаем следующий результат для мнимой части средней динамической спиновой восприимчивости на низких частотах $\delta |\omega|/(2J_z) \ll T$ и высоких температурах $T \gg \delta J_z/(\delta - J_z)$:

$$\frac{\mathrm{Im}\,\overline{\chi_{\perp}(\omega)}}{\mathrm{Im}\,\chi_{\perp}^{(0)}(\omega)} = 1 + \frac{3\zeta(3)\delta^2}{16\pi^4\beta T^2} \left[-\frac{\delta^2}{(\delta - J_z)^2} - \frac{\delta^2\omega^2}{TJ_z^2(\delta - J_z)} + \frac{\delta^2\omega^4}{4T^2J_z^4} \right].$$
(3.38)

Здесь Im $\chi_{\perp}^{(0)}(\omega)$ дается (2.27) при b = 0. Заметим, что (3.38) может быть получено из выражения (2.27), если заменить $1/\Delta$ вместо $1/\delta$ и усреднить с помощью (3.11). В режиме низких частот и высоких температур флуктуации малы. В случае высоких частот и высоких температур, $\delta |\omega|/(2J_z) \gg T \gg \delta J_z/(\delta - J_z)$, первая и вторая строчки в правой части (3.37) дают основной вклад. Далее с помощью асимптотического выражения (3.7) для L(h) при $|h| \gg 1$ мы находим, что при $|\omega|/(2J_z) \gg T/\delta \gg J_z/(\delta - J_z)$ мнимая часть средней динамической спиновой восприимчивости может быть записана как

$$\frac{\operatorname{Im}\overline{\chi_{\perp}(\omega)}}{\operatorname{Im}\chi_{\perp}^{(0)}(\omega)} = 1 + \frac{\ln 2}{2\pi^2\beta} \frac{\omega^2\delta^2}{T^2 J_z^2}.$$
(3.39)

Здесь Im $\chi_{\perp}^{(0)}(\omega)$ дается (2.28) при b = 0. Заметим что результат (3.39) верен при условии $[\omega\delta/(TJ_z)]^2 \ll \pi^2 \beta$, который оправдывает теорию возмущений по V. Подчеркнем, что хотя (3.39) верно при высоких температурах $T \gg \delta J_z/(\delta - J_z)$ оно не может быть получено из (2.28) подстановкой $1/\Delta$ вместо $1/\delta$ и усреднением с помощью (3.11).

В случае низких температур $T \ll \delta J_z/(\delta - J_z)$, независимые от *m* вкладов в правой части (3.37) исчезают в главном порядке. Используя асимптотические результаты для L(h) при $|h| \gg 1$, (см (3.7)) мы получаем

$$\overline{F_{\chi}(m)} = 1 - \frac{x}{\pi^2 \beta} \begin{cases} (xm^2 - \frac{1}{2}) \ln y, & x|m| \ll 1, \\ (xm^2 - \frac{1}{2}) \ln \frac{y}{x^2m^2}, & 1 \ll x|m| \ll \sqrt{y}, \\ \frac{y}{2x} \ln \frac{x^2m^2}{y}, & \sqrt{y} \ll x|m|. \end{cases}$$
(3.40)

Таким образом, мы получаем следующий результат для мнимой части средней динамической спиновой восприимчивости при низких частотах, $|\omega|/J_z^2 \ll T/\delta \ll J_z/(\delta - J_z)$:

$$\frac{\operatorname{Im}\overline{\chi_{\perp}(\omega)}}{\operatorname{Im}\chi_{\perp}^{(0)}(\omega)} = 1 - \frac{\delta}{\beta\pi^2 T} \left(\frac{\delta\omega^2}{4TJ_z^2} + \frac{1}{2}\right) \ln \frac{\delta J_z}{(\delta - J_z)T}.$$
(3.41)

Здесь, $\operatorname{Im} \chi_{\perp}^{(0)}(\omega)$ дается (2.27) при b = 0. В интервале температур $|\omega|/J_z^2 \ll T/\delta \ll J_z/(\delta - J_z)$ эффект флуктуаций одночастичных уровней подавлен дополнительно маленьким фактором $\delta/T \ll 1$. Таким образом мы ожидаем, что теория возмущений верна даже при $T \ll \delta J_z/[\pi^2 \beta(\delta - J_z)]$.

При высоких частотах , $1 \ll (\omega \delta/(J_z T))^2$, и низких температурах $T \ll \delta J_z/(\delta - J_z)$ мы получаем из (3.40) следующий результат для средней динамической спиновой восприимчивости:

$$\frac{\operatorname{Im}\overline{\chi_{\perp}(\omega)}}{\operatorname{Im}\chi_{\perp}^{(0)}(\omega)} = 1 + \frac{1}{2\pi^{2}\beta} \min\left\{\frac{\omega^{2}\delta^{2}}{2J_{z}^{2}T^{2}}, \frac{\delta J_{z}}{T(\delta - J_{z})}\right\} \ln\max\left\{\frac{\omega^{2}\delta(\delta - J_{z})}{4J_{z}^{3}T}, \frac{4J_{z}^{3}T}{\omega^{2}\delta(\delta - J_{z})}\right\}.$$
 (3.42)

Здесь Im $\chi_{\perp}^{(0)}(\omega)$ дается выражением (2.28) при b = 0. Теория возмущений оправдана при max { $[\omega\delta/(J_zT)]^2, \delta J_z/[T(\delta - J_z)]$ } $\ll \pi^2 \beta$. Напомним, что максимум Im $\chi_{\perp}^{(0)}(\omega)$ расположен вблизи частоты $\omega_{\text{ext}} \approx \sqrt{2J_z^2T/(\delta - J_z)}$. Тогда, как следует из (3.42), флуктуации приводят к увеличению максимального значения средней динамической восприимчивости в $[(\delta J_z/(\pi^2 \beta T(\delta - J_z))]$ раз. Из-за флуктуаций есть небольшой сдвиг максимума к нулевой частоте, $\delta \omega_{\text{ext}}/\omega_{\text{ext}} \sim -\delta^2/(\pi^2 \beta T^2)$.

Так как $Z_S \leqslant 1$ мы можем оценить функцию $F_{\chi}(m)$ сверху следующим образом

$$F_{\chi}(m) \leqslant \left(\frac{\delta}{\delta - J_z}\right)^{1/2} \int_{-\infty}^{\infty} d\theta \, e^{-\theta^2 - V\left(xm + i\theta\sqrt{x}\right)}.$$
(3.43)

Следовательно $F_{\chi}(m)$ остается конечным при $J_z < \delta$. Таким образом несмотря на флуктуации уровней стоунеровская неустойчивость проявляется в Im $\chi_{\perp}(\omega)$ только при $J_z = \delta$.

Согласно (3.43) при усреднении по флуктуациям уровней величина Im $\chi_{\perp}(\omega)$ остается конечным. Однако, форма кривой может существенно измениться в режиме сильных флуктуаций. Чтобы оценить Im $\chi_{\perp}(\omega)$ at $\delta \ll T \ll \delta J_z / [\pi^2 \beta (\delta - J_z)]$ мы подставим вырожденный процесс $\tilde{v}(h)$ для V(h) в (3.36). Тогда, найдем, что

$$\overline{F_{\chi}(m)} = \frac{e^{\beta(\delta - J_z)m^2}}{\sqrt{8z^2 \ln 2}} \exp\left[-\frac{\beta(\delta - J_z)m^2}{2z^2 \ln 2}\right]$$
(3.44)

при $\beta(\delta - J_z)m^2 \gg 1$. Напомним, здесь $z^2 = \delta^2/[\pi^2 \beta T(\delta - J_z)]$. Этот результат означает, что Im $\overline{\chi_{\perp}(\omega)}$ имеет минимум и максимум на частотах

$$\omega_{\text{ext}} = \pm \frac{2\sqrt{\ln 2}}{\sqrt{\pi^2 \beta}} \frac{\delta^2}{\delta - J_z}.$$
(3.45)

Из-за сильных флуктуаций одноэлектронных уровней частоты экстремумов смещаются к более высоким частотам (по-сравнению с соответствующими результатами без флуктуаций) и перестают зависеть от температуры. Флуктуации не влияют существенно на значения $\operatorname{Im} \overline{\chi_{\perp}(\omega)}$ в экстремумах. Следовательно наклон при $\omega = 0$ становится меньше, $\operatorname{Im} \overline{\chi_{\perp}(\omega)} / \operatorname{Im} \chi_{\perp}^{(0)}(\omega) \propto 1/z \ll 1$.

3.3 Учет флуктуаций для восприимчивости в случае Гейзенберга

3.3.1 Продольная спиновая восприимчивость

Для случая изотропного обменного взаимодействия, $J_{\perp} = J_z \equiv J$, интегрирование по \mathcal{B} в (1.19) становится тривиальным. Тогда для $T \gg \delta$ мы получаем [29]

$$Z_S = \left(\frac{\delta}{\delta - J}\right)^{1/2} \frac{e^{\frac{\beta b^2}{4J}}}{\operatorname{sh}\left(\beta b/2\right)} \tilde{\Xi}\left(\frac{b}{J}, \frac{\beta J\delta}{\delta - J}\right),\tag{3.46}$$

где

$$\tilde{\Xi}(x,y) = \int_{-\infty}^{\infty} \frac{dh}{\sqrt{\pi}} \operatorname{sh}(hx\sqrt{y})e^{-h^2 + h\sqrt{y} - V(h\sqrt{y})}.$$
(3.47)

Так как в отсутствии магнитного поля Z возрастает с увеличением J (см (1.9)), можно удостовериться, что и для гейзенберговского обменного взаимодействия $Z_S \ge 1$. Детальное исследование разложения по теории возмущений по V для продольной спиновой восприимчивости можно найти в [29]. Также как для случая изинговского обменного взаимодействия влияние флуктуаций существенно при b = 0 и $\delta \ll T \ll J\delta/[\pi^2\beta(\delta - J)]$. В этом интервале параметров типичное значение |h| в интеграле в правой части (3.47) велико , $|h| \sim \sqrt{\beta J} \gg 1$ где $\overline{J} = \delta J/(\delta - J)$. Тогда для b = 0 получим

$$Z_S = \frac{2}{\sqrt{\beta J}} \frac{\delta}{\delta - J} \int_{-\infty}^{\infty} \frac{dh}{\sqrt{\pi}} h \, e^{-h^2 + h\sqrt{y} - zv(h)},\tag{3.48}$$

где $z = [\beta \bar{J}/(\pi^2 \beta)]^{1/2}$. Здесь $\beta = 1$ что соответствует ортогональному ансамблю Вигнера-Дайсона. Функция распределения $\mathcal{P}(W) = \mathsf{P}\{\ln Z_S > W\}$ может быть оценена таким же образом как в предыдущем разделе

$$Z_S \leqslant \frac{2}{\sqrt{\beta J}} \left(\frac{\delta}{\delta - J} \right) \left[2 \int_0^\infty \frac{dh \, h \, \mathrm{sh} \, (h\sqrt{y})}{\sqrt{\pi \gamma}} e^{-(1 - \gamma)h^2/\gamma} \right] \max_{h \ge 0} \left\{ e^{-h^2 - (z/\sqrt{\gamma})v(h)} \right\}, \tag{3.49}$$

с произвольным параметром разбиения γ (0 < γ < 1). Таким образом мы получаем следующую оценку сверху:

$$\mathcal{P}(W) \leqslant a_{\gamma} \exp\left\{-\frac{\gamma}{2z^2 \ln 2} \left[W + \frac{3}{2} \ln \frac{(1-\gamma)J}{\bar{J}}\right]\right\},\tag{3.50}$$

где $a_{\gamma} = \exp\{(\pi^2 \beta \gamma)/[8(1-\gamma) \ln 2]\}$. Из этой оценки следует, что моменты $\ln Z_S$ (и χ_{zz}) конечны при $J < \delta$. При $z \gg 1$ интеграл в правой части (3.47) может быть вычислен в седловом приближении, что сводит статистику $\ln Z_S$ к статистике максимумов процесса $Y(h) = -h^2 + h\sqrt{y} - zv(h)$. Далее так же как и в предыдущем разделе используя результаты Хюслера и Питербарга [43], мы находим что хвост функции распределения при $W \gg \delta J/[T(\delta - J)]$ дается следующим выражением $\mathcal{P}_{\text{tail}}(\pi^2 \beta T(\delta - J)W/(\delta J))$ (см (3.32)). Заметим, что для этого хвоста дрейфовый член $h\sqrt{y}$ в процессе Y(h) не важен.

Типичное значение h дающее вклад в интеграл в правой части (3.48) равно $\sqrt{y}/2$. Тогда для $z \gg 1$ мы имеем с логарифмической точностью, $\ln Z_s - y/4 = (z\sqrt{y}/2)v(1)$. Следовательно, при $\delta \ll T \ll \bar{J}/(\pi^2 \beta)$ средний k-ый момент продольной восприимчивости может быть оценен следующим образом

$$\overline{\left(\chi_{zz} - \chi_{zz}^{(0)}\right)^k} \propto \left(\frac{\delta^2}{\sqrt{\pi^2 \beta} T(\delta - J)^2}\right)^k,\tag{3.51}$$

где $\chi_{zz}^{(0)} = \delta^2 / [12T(\delta - J)^2]$ - спиновая восприимчивость в отсутствиии флуктуации уровней. Заметим, что для $\delta \ll T \ll \bar{J}/(\pi^2 \beta)$ скейлинг средней продольной спиновой восприимчивости такой же как и в (3.51) при k = 1 был получен в работе [22].

3.4 Заключение

В этой главе было исследовано влияние флуктуаций одночастичного спектра квантовой точки на продольную спиновую восприимчивость в случаях изинговского и изотропного обменного взаимодействия. Можно сделать следующие выводы:

1) Моменты спиновой восприимчивости остаются конечными вплоть до точки перехода Стоунера. Соответственно переход Стоунера не смещается из-за флуктуаций.

2) Хвост функции распределения спиновой восприимчивости экспоненциальный со слабо зависящей от аргумента предэкспонентой.

3) Флуктуации приводят к существенному уширению пиков мнимой части поперечной спиновой восприимчивости, не приводя, однако, к другим немонотонностям.

Глава 4

Динамика спина при туннельной связи с резервуаром

4.1 Введение

В предыдущих главах речь шла об изолированной квантовой точке. Однако, для изучения транспорта через квантовую точку необходимо присоединить к ней контакты. Само наличие контакта меняет действие для квантовой точки. В работе [13] была изучена динамика полного спина и выведено обобщение действие Амбегаокара-Эккерна-Шёна (АЭШ) [14, 15] для квантовой точки при наличии контактов в адиабатическом приближении. Это приближение позволяло разложить функцию Грина относительно функции Грина свободных электронов по остаточному члену возникшему из-за перехода во вращающуюся систему отсчета. В этой главе приводится метод устранения этого остаточного члена за счет отказа от сохранения стандартных фермионных граничных условий.

Этот метод позволяет вывести действие типа АЭШ для полного спина квантовой точки, в котором динамика спина не предполагается адиабатической. Полученное действие позволяет исследовать вопрос о том, как связь с резервуаром влияет на мезоскопическую стоунеровскую неустойчивость.

4.2 Случай свободных частиц

Рассмотрим, как граничные условия на переменные функционального интеграла влияют на статистическую сумму и функцию Грина системы.

Известно [44], что для свободных частиц статистическая сумма может быть вычислена

как интеграл по грассмановым переменным

$$Z = \lim_{M \to \infty} \int \prod_{k=1}^{M} \prod_{\alpha} d\overline{\psi}_{\alpha,k} d\psi_{\alpha,k} e^{-S(\overline{\psi},\psi)}.$$
(4.1)

Здесь действие

$$S(\overline{\psi},\psi) = \Delta t \sum_{k=1}^{M} \sum_{\alpha} \left[\overline{\psi}_{\alpha k} \left\{ \frac{\psi_{\alpha,k} - \psi_{\alpha,k-1}}{\Delta t} - \mu \psi_{\alpha,k-1} \right\} + H(\overline{\psi}_{\alpha,k},\psi_{\alpha,k-1}) \right] \Big|_{\psi_{\alpha,0} = \zeta \psi_{\alpha,M}}, \quad (4.2)$$

где $\zeta = \pm$ для бозонов/фермионов. Перепишем это выражение следующим образом

$$S(\overline{\psi},\psi) = \sum_{i,j} \overline{\psi}_i S_{i,j}^{(\alpha)} \psi_j, \qquad (4.3)$$

где $M \times M$ матрица

$$S^{(\alpha)} = \begin{bmatrix} 1 & 0 & \dots & 0 & -\zeta a \\ -a & 1 & 0 & & & 0 \\ 0 & -a & 1 & \ddots & & \vdots \\ & 0 & -a & \ddots & 0 & \\ \vdots & 0 & \ddots & 1 & 0 \\ 0 & & \dots & -a & 1 \end{bmatrix},$$
(4.4)

И

$$a = 1 - \frac{\beta}{M} (\epsilon_{\alpha} - \mu). \tag{4.5}$$

Заметим, что граничные условия проявляют себя только в одном матричном элементе $S_{1,M}^{(\alpha)} = -\zeta a.$

Таким образом получаем для статистической суммы

$$Z = \prod_{\alpha} \det S^{(\alpha)} = \prod_{\alpha} (1 - \zeta e^{-\beta(\epsilon_{\alpha} - \mu)})$$
(4.6)

и функции Грина

$$\mathcal{G}(\alpha, \tau_1; \gamma, \tau_2; \mu) \Big|_{\tau_1 > \tau_2} = \frac{e^{-(\epsilon_\alpha - \mu)(\tau_1 - \tau_2)}}{1 - \zeta e^{-\beta(\epsilon_\alpha - \mu)}} \delta_{\alpha\gamma}$$
(4.7)

для любого значения ζ .

Подчеркнем, что выражения (4.6) и (4.7) справедливы при любом значении ζ , которое определяет граничное условие для грассмановых переменных в функциональном интеграле (4.1).

4.3 Случай кулоновского взаимодействия

Покажем как же можно использовать необычные граничные условия для вычисления статистической суммы и функции Грина для взаимодействующего гамильтониана на примере кулоновского взаимодействия.

Введем вспомогательное интегрирование по полю ϕ чтобы избавиться от нелинейных членов во взаимодействии, то есть сделаем преобразование Хаббарда-Стратоновича

$$\mathcal{L} = \sum_{\alpha} \Psi_{\alpha}^* \Big[\partial_{\tau} - \epsilon_{\alpha} + \mu + i\phi \Big] \Psi_{\alpha} + \frac{\phi^2}{4E_c} - iN_0\phi \tag{4.8}$$

Чтобы избавиться от $i\phi$ в первом члене проделаем следующее преобразование

$$\Psi_{\alpha} = e^{-i\int_{0}^{\tau}\phi(\tau)d\tau}\psi_{\alpha}(\tau) \tag{4.9}$$

Таким образом мы получаем в точности лагранжиан для свободных электронов

$$\mathcal{L} = \sum_{\alpha} \psi_{\alpha}^* \Big[\partial_{\tau} - \epsilon_{\alpha} + \mu \Big] \psi_{\alpha} + \frac{\phi^2}{4E_c} - iN_0\phi.$$
(4.10)

Отличие будет проявляться в том, что в функции Грина появятся дополнительные множители

$$G^{\Psi}_{\tau_1;\tau_2} = G^{\psi}_{\tau_1;\tau_2} e^{-i\int_{\tau_2}^{\tau_1} \phi(\tau)d\tau}$$
(4.11)

и в граничных условиях нужно учесть, что

$$\zeta = -e^{-i\int_0^\beta \phi(\tau)d\tau}.\tag{4.12}$$

Таким образом, для функции Грина имеем следующее выражение

$$G_{\alpha,\tau_1;\gamma,\tau_2} = \delta_{\alpha\gamma} \int \mathcal{D}\phi e^{-\int_0^\beta \left[\frac{\phi^2}{4E_c} - iN_0\phi\right]} \frac{e^{-(\epsilon_\alpha - \mu)(\tau_1 - \tau_2) - i\int_{\tau_2}^{\tau_1} \phi(\tau)d\tau}}{1 - \zeta e^{-\beta(\epsilon_\alpha - \mu)}}.$$
(4.13)

Теперь интегрируя по ϕ можно получить (см. Приложение) известное выражение для функции Грина с кулоновским взаимодействием

$$G_{\alpha,\tau_{1};\gamma,\tau_{2}} = e^{E_{c}\tau_{12}(\tau_{12}-\beta)} \int_{-\pi T}^{\pi T} d\phi_{0} \sum_{k} e^{i\phi_{0}(\tau-\beta k)} e^{\beta E_{c}(k-N_{0}+\tau/\beta)^{2}} \Big[\mathcal{G}(\alpha,\tau_{1};\gamma,\tau_{2};\mu-i\phi_{0}) e^{-i\tau_{12}\phi_{0}} \Big]$$

$$(4.14)$$

4.4 Случай гейзенберговского обменного взаимодействия

Проделаем аналогичную процедуру по деформации граничных условий для случая обменного взаимодействия. После преобразования Хаббарда-Стратоновича получим следующее выражение для лагранжиана

$$\mathcal{L} = \sum_{\alpha} \Psi_{\alpha}^{*} \Big[\partial_{\tau} - \epsilon_{\alpha} + \mu + \frac{\boldsymbol{\sigma} \Phi}{2} \Big] \Psi_{\alpha} + \frac{\Phi^{2}}{4J}$$
(4.15)

Чтобы откалибровать $\sigma\Phi$ в первом слагаемом проделаем следующее преобразование

$$\Psi_{\alpha} = \overrightarrow{\mathcal{T}} e^{-\frac{1}{2} \int_{0}^{\tau} \boldsymbol{\sigma} \boldsymbol{\Phi}(\tau) d\tau} \psi_{\alpha}(\tau)$$
(4.16)

Таким образом снова получим лагранжиан для свободных электронов

$$\mathcal{L} = \sum_{\alpha} \psi_{\alpha}^* \Big[\partial_{\tau} - \epsilon_{\alpha} + \mu \Big] \psi_{\alpha} + \frac{\Phi^2}{4J}.$$
(4.17)

В функции Грина появятся дополнительные сомножители

$$G^{\Psi}_{\tau_1;\tau_2} = \overrightarrow{\mathcal{T}} e^{-\frac{1}{2}\int_0^{\tau_1} \boldsymbol{\sigma} \boldsymbol{\Phi}(\tau)d\tau} G^{\psi}_{\tau_1;\tau_2} \overleftarrow{\mathcal{T}} e^{-\frac{1}{2}\int_0^{\tau_2} \boldsymbol{\sigma} \boldsymbol{\Phi}(\tau)d\tau}$$
(4.18)

и граничные условия определяются

$$\zeta = -\overrightarrow{\mathcal{T}} e^{-\frac{1}{2}\int_0^\beta \boldsymbol{\sigma} \boldsymbol{\Phi}(\tau)d\tau}$$
(4.19)

Отметим, что ζ теперь матрица 2 на 2.

Для начала вычислим статистическую сумму

$$Z = \int \prod_{\alpha} \mathcal{D}\psi_{\alpha} \overline{\psi}_{\alpha} e^{-S(\overline{\psi},\psi)} = \prod \det S^{(\alpha)}$$
(4.20)

где

$$S^{(\alpha)} = \begin{bmatrix} 1 & 0 & \dots & 0 & -\zeta a \\ -a & 1 & 0 & & 0 \\ 0 & -a & 1 & \ddots & & \vdots \\ 0 & -a & \ddots & 0 & \\ \vdots & 0 & \ddots & 1 & 0 \\ 0 & & \dots & -a & 1 \end{bmatrix}.$$
 (4.21)

Подчеркнем, что каждый элемент в этой матрице это матрица 2 на 2.

Преобразуя матрицу под детерминантом мы получим

$$\det S^{(\alpha)} = \det \begin{bmatrix} 1 & 0 & \dots & 0 & -\zeta a \\ 0 & 1 & 0 & & -\zeta a^2 \\ 0 & 1 & \ddots & & \vdots \\ & 0 & 1 & \ddots & & \vdots \\ & 0 & \ddots & 0 & \\ \vdots & & \ddots & 1 & -\zeta a^{M-1} \\ 0 & & \dots & 0 & 1 - \zeta a^M \end{bmatrix} = \det[1 - \zeta a^M]$$
(4.22)

После интегрирования по вспомогательным переменным преобразования Хаббарда-Стратоновича придем к выражению

$$Z = \int_{0}^{\infty} dy \int d\xi_{\beta} d\xi_{0} \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^{2}}\right) \frac{e^{-\xi_{0}}}{4yv} \exp(-w - y - 2v \operatorname{ch} \frac{\xi_{\beta} - \xi_{0}}{2}) \times \delta(\xi_{\beta} + \xi_{0} + 4 \ln 4yv) \langle \xi_{\beta} | e^{-\beta H} | \xi_{0} \rangle$$

$$(4.23)$$

где

$$H = -J\frac{\partial^2}{\partial\xi^2} + \frac{J}{4}e^{-\xi} \tag{4.24}$$

Этот результат совпадает с соответствующим результатом из [29].

Перейдем к вычислению функции Грина. Интегрируя по ψ получим

$$G^{\psi}(\alpha_1, \sigma_1, \tau_1; \alpha_2, \sigma_2, \tau_2) = \delta_{\alpha_1 \alpha_2} \left[S^{(\alpha)} \right]_{(\sigma_1, \tau_1; \sigma_2, \tau_2)}^{-1}$$
(4.25)

Матрица обратная к $S^{(\alpha)}$ имеет довольно простой вид

$$\left[S^{(\alpha)}\right]^{-1} = \begin{bmatrix} 1 & \zeta a^{M-1} & \dots & \zeta a^2 & \zeta a \\ a & 1 & \zeta a^{M-1} & & \zeta a^2 \\ a^2 & a & 1 & \ddots & & \vdots \\ & & a & \ddots & \zeta a^{M-1} \\ \vdots & & & \ddots & 1 & \zeta a^{M-1} \\ a^{M-1} & a^{M-2} & \dots & a & 1 \end{bmatrix} \times (1 - a^M \zeta)^{-1}$$
(4.26)

Таким образом мы получаем

$$G^{\Psi}(\alpha,\uparrow,\tau_{1};\alpha,\uparrow,\tau_{2}) = e^{-(\epsilon_{\alpha}-\mu)(\tau_{1}-\tau_{2})} \int \mathcal{D}\Phi e^{-\frac{1}{4J}\int_{0}^{\beta}\Phi^{2}d\tau} \left[\overrightarrow{\mathcal{T}}e^{-\frac{1}{2}\int_{0}^{\tau_{1}}\sigma\Phi(\tau)d\tau}\right]_{\uparrow\sigma} \\
 \times \left[\left(1+e^{-\beta(\epsilon_{\alpha}-\mu)}\overrightarrow{\mathcal{T}}e^{-\frac{1}{2}\int_{0}^{\beta}\sigma\Phi(\tau)d\tau}\right)\right]_{\sigma\sigma'}^{-1} \left[\overleftarrow{\mathcal{T}}e^{-\frac{1}{2}\int_{0}^{\tau_{2}}\sigma\Phi(\tau)d\tau}\right]_{\sigma'\uparrow} (4.27)$$

Взяв интегралы по вспомогательным переменным преобразования Хаббарда-Стратоновича получим

$$G_{b}^{\Psi} = \left(\prod_{\gamma \neq \alpha} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^{2}}\right) e^{-\tau(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\nu_{2} \int_{0}^{\infty} d\nu K_{2i\nu}(2v_{\alpha}) \langle \nu | \frac{1}{\eta} | \nu_{2} \rangle \langle \nu_{2} | \eta^{2} | \nu \rangle \quad (4.28)$$
$$\times \left[e^{-\tau J \nu_{2}^{2}} e^{-(\beta-\tau) J \nu^{2}} + e^{-\beta(\epsilon_{\alpha}-\mu)} e^{-\tau J \nu^{2}} e^{-(\beta-\tau) J \nu_{2}^{2}} \right]$$

Этот результат в точности совпадает с результатом полученным в работе [29] из операторного подхода.

4.5 Мацубаровское действие АЭШ для спина

Полученные выше результаты для приводят к следующему виду АЭШ действия в мнимом времени:

$$S_{AES} = -\frac{1}{4J} \int_0^\beta d\tau \Phi^2 + \ln Z[\mathbf{\Phi}] - \operatorname{Tr} t G_d[\mathbf{\Phi}] t^{\dagger} G_r, \qquad (4.29)$$

где

$$G_r(\tau) = -\frac{\pi T \nu_r}{\sin(\pi T \tau)},\tag{4.30}$$

$$Z[\mathbf{\Phi}] = \prod_{\gamma} \det \left(1 + U(\beta) e^{-\beta(\epsilon_{\alpha} - \mu)} \right), \qquad (4.31)$$

$$G_d[\tau_1, \tau_2; \mathbf{\Phi}] = \sum_{\alpha} U(\tau_1) e^{-\tau_{12}(\epsilon_{\alpha} - \mu)} \left(1 + U(\beta) e^{-\beta(\epsilon_{\alpha} - \mu)} \right)^{-1} U^{-1}(\tau_2),$$
(4.32)

$$U(\tau) = \overrightarrow{\mathcal{T}} \exp\left[-\frac{1}{2}\int_0^{\tau} d\tau' \boldsymbol{\sigma} \boldsymbol{\Phi}(\tau')\right].$$
(4.33)

Используя представление Вея-Нормана-Колоколова для $U(\tau)$ и вводя следующие обозначения:

$$U(\tau) = \begin{pmatrix} A_{\tau} & B_{\tau} \\ C_{\tau} & D_{\tau} \end{pmatrix}, \qquad (4.34)$$

$$A_{\tau} = e^{\frac{1}{2}\int_{0}^{\tau} d\tau' \rho}, \qquad B_{\tau} = A_{\tau} \int_{0}^{\tau} d\tau' \kappa^{-}(\tau') e^{-\int_{0}^{\tau'} dt \rho(t)}$$
$$C_{\tau} = \kappa^{+}(\tau) A_{\tau}, \qquad D_{\tau} = A_{\tau}^{-1} + \kappa^{+}(\tau) B_{\tau}, \qquad (4.35)$$

$$\frac{1}{2}\Phi_0 \sin \theta e^{-i\phi} = -\kappa^-, \quad \frac{1}{2}\Phi_0 \sin \theta e^{i\phi} = -\partial_\tau \kappa^+ + \rho \kappa^+ + \kappa^{+2} \kappa^-, \quad \Phi_0 \cos \theta = \rho + 2\kappa^+ \kappa^-, \quad (4.36)$$

мы можем записать действие АЭШ следующим образом

$$S_{AES} = S^{(0)} + S^{(1)} + S^{(g)}$$
(4.37)

где

$$S^{(0)} = -\frac{1}{4J} \int_0^\beta d\tau \left[\rho^2 + 4\dot{\kappa}^+ \kappa^-\right] + \frac{1}{2} \int_0^\beta d\tau \rho, \qquad (4.38)$$

$$S^{(1)} = \sum_{\alpha} \sum_{\sigma=\pm} \ln \left(1 + e^{-\beta(\epsilon_{\alpha}-\mu+\sigma h_{\beta})} \right),$$

$$2 \operatorname{ch} \beta h_{\beta} = 2 \operatorname{ch} \int_{0}^{\beta} \frac{\rho(\tau)}{2} d\tau + e^{\frac{1}{2} \int_{0}^{\beta} \rho(\tau) d\tau} \kappa^{+}(\beta) \int_{0}^{\beta} \kappa^{-}(\tau) e^{-\int_{0}^{\tau} \rho(\tau') d\tau'} d\tau, \qquad (4.39)$$

И

$$S^{(g)} = -t^{2} \int_{0}^{\beta} d\tau_{1} d\tau_{2} G_{r}(\tau_{21}) \frac{1}{2 \operatorname{sh}(\beta h_{\beta})} \Biggl\{ \Biggl[G_{d}^{(0)}(\tau_{12},\mu+h_{\beta}) e^{(\beta-\tau)h_{\beta}} - G^{(0)}(\tau_{12},\mu-h_{\beta}) e^{-(\beta-\tau)h_{\beta}} \Biggr] \\ \times \Biggl[A_{\tau_{1}} D_{\tau_{2}} - B_{\tau_{1}} C_{\tau_{2}} - C_{\tau_{1}} B_{\tau_{2}} + D_{\tau_{1}} A_{\tau_{2}} \Biggr] + \Biggl[G_{d}^{(0)}(\tau,\mu-h_{\beta}) e^{\tau h_{\beta}} - G_{d}^{(0)}(\tau,\mu+h_{\beta}) e^{-\tau h_{\beta}} \Biggr] \\ \times \Biggl[A_{\tau_{1}} D_{\tau_{\beta}} D_{\tau_{2}} + A_{\tau_{1}} B_{\tau_{\beta}} C_{\tau_{2}} - B_{\tau_{1}} C_{\tau_{\beta}} D_{\tau_{2}} - B_{\tau_{1}} A_{\tau_{\beta}} C_{\tau_{2}} - C_{\tau_{1}} D_{\tau_{\beta}} A_{\tau_{2}} + D_{\tau_{1}} C_{\tau_{\beta}} B_{\tau_{2}} + D_{\tau_{1}} A_{\tau_{\beta}} A_{\tau_{2}} \Biggr] \Biggr\}.$$

$$(4.40)$$

Заметим, что последнее слагаемое в $S^{(0)}$ возникло из якобиана преобразования Вея-Нормана-Колоколова. Здесь мы пользовались следующим результатом:

$$\sum_{\alpha} e^{-\tau(\epsilon_{\alpha}-\mu)} \left(1 + U(\beta)e^{-\beta(\epsilon_{\alpha}-\mu)}\right)^{-1} = \sum_{\alpha} \frac{e^{-\tau(\epsilon_{\alpha}-\mu)}}{[1 + e^{-\beta(\epsilon_{\alpha}-\mu+h_{\beta})}][1 + e^{-\beta(\epsilon_{\alpha}-\mu-h_{\beta})}]} \left(1 + U^{-1}(\beta)e^{-\beta(\epsilon_{\alpha}-\mu)}\right)$$
$$= \frac{1}{2\operatorname{sh}(\beta h_{\beta})} \left[G_{d}^{(0)}(\tau,\mu+h_{\beta})e^{(\beta-\tau)h_{\beta}} - G_{d}^{(0)}(\tau,\mu-h_{\beta})e^{-(\beta-\tau)h_{\beta}} + U^{-1}(\beta)G_{d}^{(0)}(\tau,\mu-h_{\beta})e^{\tau h_{\beta}} - U^{-1}(\beta)G_{d}^{(0)}(\tau,\mu+h_{\beta})e^{-\tau h_{\beta}} \right], \quad (4.41)$$

где

$$G_d^{(0)}(\tau,\mu) = \sum_{\alpha} \frac{e^{-\tau(\epsilon_{\alpha}-\mu)}}{1+e^{-\beta(\epsilon_{\alpha}-\mu)}}.$$
(4.42)

Если можно пренебречь расстоянием между одночастичными уровнями квантовой точки, то есть при $T \gg \delta$, мы можно воспользоваться следующими упрощениями:

$$G_{d}^{(0)}(\tau,\mu) = -\frac{\pi T/\delta}{\sin(\pi T\tau)}$$
(4.43)

$$S^{(1)} = \text{const} + \beta h_{\beta}^2 / \delta \tag{4.44}$$

4.6 Заключение

В этой главе был проделан вывод действия АЭШ для полного спина квантовой точки. Можно сделать следующие выводы:

1) Можно приводить гамильтониан со взаимодействием к гамильтониану для свободных электронов при помощи указанного в тексте метода. Информация о взаимодействии сохраняется при этом в граничных условиях на фермионные поля.

2) Действие АЭШ записанное через переменные Вея-Нормана-Колоколова позволяют описывать динамику спина квантовой точки туннельно связанной с резервуаром вне адиабатического приближения.

Заключение

Полученные в диссертационной работе результаты позволяют сделать следующие выводы

1) Стоунеровская неустойчивость не смещается за счет флуктуаций одночастичного спектра квантовой точки.

2) Наличие дополнительной немонотонности в туннельной плотности состояний предсказанное в работе [1] не подтвердилось при непертурбативном учете анизотропии обменного взаимодействия.

3) Температурная зависимость спиновой восприимчивости подавляется за счет анизотропии обменного взаимодействия.

4) Флуктуации одночастичного спектра приводят к существенному уширению динамической спиновой восприимчивости вблизи перехода Стоунера.

5) Действие АЭШ записанное через переменные Вея-Нормана-Колоколова позволяют описывать динамику спина квантовой точки туннельно связанной с резервуаром вне адиабатического приближения.

Приложение А

Вывод точного выражения для туннельной плотности состояний

Здесь будет приведен детальный вывод точного выражения для туннельной плотности состояний при произвольном одночастичном спектре квантовой точки. В силу ненулевой величины параметра \varkappa действие для κ в Ур. (1.39) не гауссово: в нем присутствуют члены четвертого порядка. Чтобы избавиться от таких членов введем вспомогательные переменные η_{p,n_p} :

$$\exp\left[\frac{ip\Delta\varkappa}{4J_{\perp}}\left(\kappa_{p,n_{p}}^{-p}\right)^{2}\left(\kappa_{p,n_{p}}^{p}+\kappa_{p,n_{p}-1}^{p}\right)^{2}\right] = \sqrt{\frac{ip\Delta\varkappa}{4\pi J_{\perp}}}\int d\eta_{p,n_{p}}\exp\left(\frac{ip\Delta\varkappa}{4J_{\perp}}\eta_{p,n_{p}}^{2}\right)$$
$$\times \exp\left[-\frac{ip\Delta\varkappa}{2J_{\perp}}\eta_{p,n_{p}}\kappa_{p,n_{p}}^{-p}\left(\kappa_{p,n_{p}}^{p}+\kappa_{p,n_{p}-1}^{p}\right)\right].$$
(A.1)

Далее следуя [36], мы вводим новые переменные

$$\kappa_{p,n_p}^{-p} = \chi_{p,n_p}^{-p} e^{\alpha_{p,n_p}}, \qquad \kappa_{p,n_p}^{p} = \chi_{p,n_p}^{p} e^{\beta_{p,n_p}},$$
(A.2)

где

$$\beta_{p,n_p} = -ip\Delta \varkappa \sum_{n=1}^{n_p} (\rho_{p,n} - \eta_{p,n}),$$

$$\alpha_{p,n_p} = -\beta_{p,n_p} - \frac{ip\Delta \varkappa}{2} (\rho_{p,n_p} - \eta_{p,n_p}).$$
(A.3)

Такой выбор α_{p,n_p} и β_{p,n_p} позволяет нам избавиться от слагаемых второго порядка по χ 's и первого порядка по ρ в действии в Ур. (1.39). Это может быть сделано с точностью до первого порядка по Δ . Заметим, что нужно учитывать якобиан преобразования (А.3),

$$\mathcal{J}_p = \exp\left[-ip\Delta\varkappa \left(\rho_{p,n_p} - \eta_{p,n_p}\right)/2\right].$$
(A.4)

В отсутствии магнитного поля , $\mathcal{K}_{\alpha\uparrow\downarrow} = \mathcal{K}_{\alpha\downarrow\uparrow} = 0$ и $\mathcal{K}_{\alpha\uparrow\uparrow} = \mathcal{K}_{\alpha\downarrow\downarrow}$. Поэтому в дальнейшем будем вычислять $K_{\alpha\uparrow\uparrow}$. После вычисления одночастичного следа в выражении (1.39) получим

$$\begin{aligned} \mathcal{K}_{\alpha\uparrow\uparrow}(t_{+},t_{-}) &= \prod_{p=\pm} \left\{ \prod_{n_{p}=1}^{N_{p}} \int d\chi_{p,n_{p}}^{p} d\chi_{p,n_{p}}^{-p} d\rho_{p,n_{p}} d\eta_{p,n_{p}} \exp\left[\frac{ip\Delta}{2}\left[(1-\varkappa)\rho_{p,n_{p}}+\varkappa\eta_{p,n_{p}}\right]\right] \\ &-\frac{ip\Delta}{4J_{z}} \left[\rho_{p,n_{p}}^{2} + \frac{\varkappa\eta_{p,n_{p}}^{2}}{1-\varkappa}\right] - \frac{\chi_{p,n_{p}}^{-p}}{J_{\perp}} (\chi_{p,n_{p}}^{p} - \chi_{p,n_{p}-1}^{p})\right] \right\} e^{-2i\epsilon_{\alpha}t_{+}} \sum_{p=\pm} e^{i\epsilon_{\alpha}t_{p}} \exp\left[\frac{ip\Delta}{2}\sum_{n_{p}=1}^{N_{p}} \rho_{p,n_{p}}\right] \\ &\times \prod_{\gamma\neq\alpha} \left\{ 1 + e^{-2i\epsilon_{\gamma}(t_{+}-t_{-})} + 2e^{-i\epsilon_{\gamma}(t_{+}-t_{-})} \cos\left(\frac{\Delta}{2}\sum_{p=\pm}\sum_{n_{p}=1}^{N_{p}} \rho_{p,n_{p}}\right) + \prod_{p=\pm} e^{-ip\epsilon_{\gamma}t_{p}} \exp\left[\frac{ip\Delta}{2}\sum_{n_{p}=1}^{N_{p}} \rho_{p,n_{p}}\right] \\ &\times \left(p\chi_{p,N_{p}}^{p} \exp\left[-ip\Delta\varkappa\sum_{n_{p}=1}^{N_{p}} (\rho_{p,n_{p}} - \eta_{p,n_{p}})\right] + i\Delta\sum_{n_{-p}=1}^{N_{-p}} \chi_{-p,n_{-p}}^{p} \exp\left[-ip\Delta\varkappa\sum_{n=1}^{n_{-p}} (\rho_{-p,n} - \eta_{-p,n}) + ip\Delta\sum_{n=1}^{n_{-p}} \rho_{-p,n}\right]\right) \right\}. \end{aligned}$$

После интегрирования по переменным χ_{p,n_p} (см. Приложение) мы получим

$$\mathcal{K}_{\alpha\uparrow\uparrow}(t_{+},t_{-}) = \prod_{p=\pm} \left\{ \prod_{n_{p}=1}^{N_{p}} \int d\rho_{p,n_{p}} d\eta_{p,n_{p}} e^{\frac{ip\Delta}{2} [(1-\varkappa)\rho_{p,n_{p}}+\varkappa\eta_{p,n_{p}}]} e^{-\frac{ip\Delta}{4J_{z}} [\rho_{p,n_{p}}^{2}+\frac{\varkappa}{1-\varkappa}\eta_{p,n_{p}}^{2}]} \right\}$$

$$\prod_{\gamma} \left(\oint_{|z_{\gamma}|=1} \frac{idz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) e^{-w_{\alpha}-2i\epsilon_{\alpha}t_{+}} \sum_{p=\pm} e^{i\epsilon_{\alpha}t_{p}} e^{\frac{ip\Delta}{2}\sum_{n_{p}=1}^{N_{p}}\rho_{p,n_{p}}} \exp\left(-2v_{\alpha}\cos\left[\frac{\Delta}{2}\sum_{p=\pm}\sum_{n_{p}=1}^{N_{p}}\rho_{p,n_{p}}\right]\right) \right)$$

$$\times \int_{0}^{\infty} dy \, e^{-y} \exp\left\{-iJ_{\perp}v_{\alpha}y\left(\prod_{p=\pm} e^{i\frac{p\Delta}{2}\sum_{n_{p}=1}^{N_{p}}\rho_{p,n_{p}}}\right) \right\}$$

$$\times \left(\sum_{p=\pm} p \, e^{-ip\Delta\varkappa\sum_{n_{p}=1}^{N_{p}}(\rho_{p,n_{p}}-\eta_{p,n_{p}})}\Delta\sum_{n_{p}=1}^{N_{p}} e^{-ip\Delta\sum_{n=1}^{n_{p}}[(1-\varkappa)\rho_{p,n}+\varkappa\eta_{p,n}]}\right)\right\}, \quad (A.6)$$

где

$$v_{\alpha} = \sum_{\gamma \neq \alpha} z_{\gamma} e^{-i\epsilon_{\gamma}(t_{+}-t_{-})},$$

$$w_{\alpha} = \sum_{\gamma \neq \alpha} z_{\gamma} \left(1 + e^{-2i\epsilon_{\gamma}(t_{+}-t_{-})}\right).$$
(A.7)

На данном этапе удобнее перейти к непрерывному представлению. Для того чтобы привести выражение (А.6) к более стандартному виду введем новые переменные:

$$\xi_p(t) = ip \int_0^t dt' [(1 - \varkappa)\rho_p(t') + \varkappa \eta_p(t')] + \xi_p(0),$$
(A.8)

удовлетворяющие следующим соотношениям:

$$\sum_{p=\pm} p \Big[\xi_p(0) - \varkappa \xi_p(t_p) + ip \varkappa \int_0^{t_p} dt \eta_p(t) \Big] = 0,$$

$$\sum_{p=\pm} \xi_p(t_p) + 2 \ln(4v_\alpha y) = 0.$$
(A.9)

После интегрирования по переменным η_p и введения вспомогательной переменной x мы можем записать функциональный интеграл для $K_{\alpha\uparrow\uparrow}$ как интеграл типа Фейнмана-Каца:

$$\mathcal{K}_{\alpha\uparrow\uparrow} = e^{-2i\epsilon_{\alpha}t_{+}} \int_{-\infty}^{\infty} dx \, e^{-iJ_{z} \varkappa x^{2}(t_{+}-t_{-})} \prod_{p=\pm} \left\{ \int \mathcal{D}[\xi_{p}] e^{ip \int_{0}^{t_{p}} dt \mathcal{L}_{p}-(1-2ipx)\xi_{p}(0)/2} \right\} \prod_{\gamma \neq \alpha} \left(\oint_{|z_{\gamma}|=1}^{\infty} \frac{idz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) \\
\times \int_{0}^{\infty} \frac{dy}{4yv_{\alpha}} e^{-y-w_{\alpha}-2v_{\alpha} \operatorname{ch}\left[(\xi_{+}(t_{+})-\xi_{-}(t_{-}))/2\right]} \delta\left(\xi_{+}(t_{+})+\xi_{-}(t_{-})+2\ln(4vy)\right) \\
\times \sum_{p=\pm}^{\infty} \left[e^{(i\epsilon_{\alpha}-\varkappa xJ_{z}+ip\varkappa J_{z}/4)t_{p}+[\xi_{p}(t_{p})-\xi_{p}(0)]/2} \right]. \quad (A.10)$$

Здесь лагранжианы \mathcal{L}_p имеют вид

$$\mathcal{L}_{p} = \frac{1}{4J_{\perp}} \dot{\xi}_{p}^{2} - \frac{J_{\perp}}{4} e^{-\xi_{p}}.$$
 (A.11)

Удобно переписать Ур. (А.10) в гамильтоновом представлении:

$$\mathcal{K}_{\alpha\uparrow\uparrow} = e^{-2i\epsilon_{\alpha}t_{+}} \prod_{\gamma\neq\alpha} \left(\oint_{|z_{\gamma}|=1} \frac{idz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) \int_{0}^{\infty} \frac{dy}{4yv_{\alpha}} e^{-y-w_{\alpha}} \int_{-\infty}^{\infty} dx \prod_{p=\pm} \left\{ \int d\xi_{p} d\xi'_{p} e^{-iJ_{z}\varkappa x^{2}pt_{p}-(1-2ipx)\xi'_{p}/2} \right\} \\
\times \delta \left(\sum_{p=\pm} \xi_{p} + 2\ln(4v_{\alpha}y) \right) e^{-2v_{\alpha}\operatorname{ch}\left[(\xi_{+}-\xi_{-})/2\right]} \langle \xi_{+}|e^{-i\mathcal{H}_{J}t_{+}}|\xi'_{+}\rangle \langle \xi'_{-}|e^{i\mathcal{H}_{J}t_{-}}|\xi_{-}\rangle \\
\times \sum_{p=\pm} \left[e^{i\epsilon_{\alpha}t_{p}} e^{\frac{\xi_{p}-\xi'_{p}}{2}} e^{\frac{ip\varkappa J_{z}t_{p}}{4}} e^{-\varkappa J_{z}t_{p}} \right].$$
(A.12)

Гамильтониан одномерной квантовой механики соответствующий лагранжиану (А.11) имеет вид [36]

$$\mathcal{H}_J = -J_\perp \frac{\partial^2}{\partial \xi^2} + \frac{J_\perp}{4} e^{-\xi}.$$
 (A.13)

Его собственные значения равны $J\nu^2$ и собственные функции представлены модифицированными функциями Бесселя $K_{2i\nu}$ где ν вещественное число:

$$\langle \xi | \nu \rangle = \frac{2}{\pi} \sqrt{\nu \sinh(2\pi\nu)} K_{2i\nu}(e^{-\xi/2}).$$
 (A.14)

Используя следующий результат (см формулу 6.794.11 на стр. 743 в [42])

$$\int_{0}^{\infty} d\nu \,\nu \,\mathrm{sh}\,(2\pi\nu) K_{2i\nu}(2v_{\alpha}) K_{2i\nu}(e^{-\xi_{+}/2}) K_{2i\nu}(e^{-\xi_{-}/2}) = \frac{\pi^{2}}{16} \exp\left(-\frac{1}{4v_{\alpha}}e^{-\frac{\xi_{+}+\xi_{-}}{2}} - 2v_{\alpha} \,\mathrm{ch}\,\frac{\xi_{+}-\xi_{-}}{2}\right), \tag{A.15}$$

мы можем проинтегрировать по $y,\,\xi_+,\,$ и $\xi_-.$ Тогда мы получим [$\zeta=(\xi'_--\xi'_+)/2$]

$$\mathcal{K}_{\alpha\uparrow\uparrow} = e^{-2i\epsilon_{\alpha}t_{+}} \prod_{\gamma\neq\alpha} \left(\oint_{|z_{\gamma}|=1} \frac{idz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) \frac{e^{-w_{\alpha}}}{v_{\alpha}} \int_{-\infty}^{\infty} dx d\zeta \ e^{\zeta/2} e^{-iJ_{z}\varkappa x^{2}(t_{+}-t_{-})} \int_{0}^{\infty} d\nu K_{2i\nu}(2v_{\alpha}) \int d\nu_{1} \langle \nu | e^{\xi/2} | \nu_{1} \rangle \\
\times \sum_{p=\pm} \times \left\{ e^{(i\epsilon_{\alpha}-\varkappa xJ_{z}+ip\varkappa J_{z}/4)t_{p}} e^{-ipJ_{\perp}\nu_{1}^{2}t_{p}+ipJ_{\perp}\nu^{2}t_{-p}} e^{2ixp\zeta-p\zeta/2} Q_{\nu\nu_{1}}(e^{p\zeta/2}) \right\}, \quad (A.16)$$

где

$$Q_{\nu_{+}\nu_{-}}(z) = z \int_{-\infty}^{\infty} d\xi \, e^{-3\xi/2} \prod_{p=\pm} \langle \nu_{p} | \xi + 2p \ln z \rangle.$$
 (A.17)

Используя следующее тождество (см. формулу 6.576.4 на стр. 676 в [42])

$$\int_{0}^{\infty} dx \, x^{-\lambda} K_{\mu}(ax) K_{\nu}(bx) = \frac{a^{-\nu+\lambda-1}b^{\nu}}{2^{2+\lambda}\Gamma(1-\lambda)} \prod_{p,q=\pm} \Gamma\left(r_{pq}\right) {}_{2}F_{1}(r_{++},r_{-+},1-\lambda;1-b^{2}/a^{2}), \quad (A.18)$$

где $r_{pq} = (1 - \lambda + p\mu + q\nu)/2$, $\Gamma(x)$ гамма функция, и $_2F_1(a, b, c; z)$ гипергеометрическая функция. Далее $(t_+ - t_- = -i\beta)$

$$\mathcal{K}_{\alpha\uparrow\uparrow}(t_{+},t_{-}) = \frac{e^{-2i\epsilon_{\alpha}t_{+}}}{2\sqrt{\pi^{3}\beta J_{\perp}}} \int_{-\infty}^{\infty} dx d\zeta \, e^{2ix\zeta-\beta J_{z} \varkappa x^{2}} \int_{-\infty}^{\infty} dh \, \operatorname{sh}(h) \prod_{\gamma\neq\alpha} \prod_{\sigma=\pm} (1+e^{-\beta\epsilon_{\gamma}-\sigma h}) \sum_{p=\pm} \left[e^{-(1+p)\zeta/2} \times e^{i(\epsilon_{\alpha}-\varkappa x J_{z}+ipJ_{z}/4)t_{p}} \mathcal{W}(2h+ipJ_{\perp}t_{p},\zeta,\beta J_{\perp}) \right],$$
(A.19)

где функция W определена как

$$\mathcal{W}(x,y,z) = \frac{1}{4\operatorname{sh} y} \left[\sum_{\sigma=\pm} \frac{\sigma\sqrt{\pi z}}{\operatorname{sh} y} \operatorname{erf}\left(\frac{x-2\sigma y}{2\sqrt{z}}\right) + 4e^{-y} \exp\left(-\frac{(x-2y)^2}{4z}\right) \right].$$
(A.20)

Здесь $\operatorname{erf}(z) = (2/\sqrt{\pi}) \int_0^z dt \exp(-t^2)$ функция ошибок. Также здесь мы восстановили все нормировочные множители.

А.0.1 Вычисление интеграла по вспомогательной переменной преобразования Хаббарда-Стратоновича в случае кулоновского взаимодействия

Вычислим интеграл по ϕ в следующем выражении

$$G_{\alpha,\tau_1;\gamma,\tau_2} = e^{E_c \tau_{12}(\tau_{12}-\beta)} \int_{-\pi T}^{\pi T} d\phi_0 \sum_k e^{i\phi_0(\tau-\beta k)} e^{\beta E_c(k-N_0+\tau/\beta)^2} \Big[\mathcal{G}_{(\alpha,\tau_1;\gamma,\tau_2;\phi_0)} e^{-i\tau_{12}\phi_0} \Big] \quad (A.21)$$

Разлагая $\frac{1}{1-\zeta e^{-\beta(\epsilon_{\alpha}-\mu)}}$ в ряд можно получить

$$G_{\alpha,\tau_1;\gamma,\tau_2} = e^{-(\epsilon_{\alpha}-\mu+E_c)(\tau_1-\tau_2)} \sum_{n=0}^{\infty} (-1)^n e^{-\beta(n-N_0)(\epsilon_{\alpha}-\mu+2(\tau_1-\tau_2)E_c/\beta)} e^{-\beta E_c(n-N_0)^2}$$
(A.22)

Заменяя

$$e^{-\beta E_c(n-N_0)^2} = const * \int_{-\infty}^{\infty} d\phi_0 e^{-\frac{\beta \phi_0^2}{4E_c} - i(n-N_0)\beta \phi_0}$$
(A.23)

и суммируя по *п* получим

$$G_{\alpha,\tau_1;\gamma,\tau_2} = e^{E_c \tau_{12}(\tau_{12}-\beta)} \int_{-\infty}^{\infty} d\phi_0 e^{-\frac{\beta\phi_0^2}{4E_c} - i\beta N_0\phi_0} \frac{e^{-(\epsilon_\alpha - \mu - i\phi_0)\tau_{12}}}{1 + e^{-\beta(\epsilon_\alpha - \mu - i\phi_0)}}$$
(A.24)

А.0.2 Вычисление интеграла по вспомогательной переменной преобразования Хаббарда-Стратоновича в случае гейзенберговского обменного взаимодействия для статистической суммы

Проделаем преобразование Вея-Нормана-Колоколова в (4.22)

$$Z = \int \mathcal{D}[\rho, \kappa^{\pm}] e^{\frac{1}{2} \int \rho(\tau) d\tau} e^{-\frac{1}{4J} \int_{0}^{\beta} (\rho^{2} + 4\dot{\kappa}^{+} \kappa^{-}) d\tau} \prod_{\alpha} \left(1 + e^{-2\beta(\epsilon_{\alpha} - \mu)} + e^{-\beta(\epsilon_{\alpha} - \mu)} \left[2 \operatorname{ch} \int_{0}^{\beta} \frac{\rho(\tau)}{2} d\tau + e^{\frac{1}{2} \int_{0}^{\beta} \rho(\tau) d\tau} \kappa^{+}(\beta) \int_{0}^{\beta} \kappa^{-}(\tau) e^{-\int_{0}^{\tau} \rho(\tau') d\tau'} d\tau \right] \right) \quad (A.25)$$

Следуя [29] введем z_{gamma}

$$Z = \int \mathcal{D}[\rho, \kappa^{\pm}] e^{-\frac{1}{4J} \int_{0}^{\beta} (\rho^{2} + 4\dot{\kappa}^{+} \kappa^{-} - 2J\rho)} \left(\prod_{\gamma} \oint \frac{idz_{\gamma}}{2\pi z_{\gamma}^{2}} \right)$$

$$\times \exp(-w - v[2 \operatorname{ch} \int_{0}^{\beta} \frac{\rho(\tau)}{2} d\tau + e^{\frac{1}{2} \int \rho(\tau) d\tau} \kappa^{+}(\beta) \int_{0}^{\beta} \kappa^{-}(\tau) e^{-\int_{0}^{\tau'} \rho(\tau') d\tau'} d\tau]) \quad (A.26)$$

где

$$w = \sum_{\gamma} z_{\gamma} (1 + e^{-2\beta(\epsilon_{\alpha} - \mu)})$$
(A.27)

$$v = \sum_{\gamma} z_{\gamma} e^{-\beta(\epsilon_{\alpha} - \mu)}.$$
 (A.28)

Интегрируя по κ^{\pm} получим

$$Z = \int_0^\infty dy \int \mathcal{D}[\rho] e^{-\frac{1}{4J} \int_0^\beta (\rho^2 - 2J\rho)} \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^2} \right)$$

$$\times \exp(-w - y - v [2 \operatorname{ch} \int_0^\beta \frac{\rho(\tau)}{2} d\tau + Jy e^{\frac{1}{2} \int \rho(\tau) d\tau} \int_0^\beta e^{-\int_0^{\tau'} \rho(\tau') d\tau'} d\tau]) \quad (A.29)$$

Вводя новые обозначения

$$\xi(\tau) = \int_0^{\tau} d\tau' \rho(\tau') + \xi(0)$$
 (A.30)

придем к выражению (4.23)

Приложение В

Вычисление интеграла по вспомогательной переменной преобразования Хаббарда-Стратоновича в случае гейзенберговского обменного взаимодействия для функции Грина

В этом приложении приводится вывод выражения (4.29) из (4.27). Разобьем функцию Грина (4.27) на две части для удобства вычисления

$$G^{\Psi}(\alpha,\uparrow,\tau_1;\alpha,\uparrow,\tau_2) = G_a^{\Psi} + G_b^{\Psi},\tag{B.1}$$

где

$$G_{a,b}^{\Psi} = e^{-(\epsilon_{\alpha}-\mu)\tau} \int \mathcal{D}[\rho,\kappa_{+},\kappa_{-}] \oint \frac{dz_{\gamma}}{2\pi z_{\gamma}^{2}} \exp(-\frac{1}{4J}) \int_{0}^{\beta} d\tau (\rho^{2}+4\dot{\kappa_{+}}\kappa_{-}-2J\rho)$$

$$\times \exp(-w_{\alpha}-v_{\alpha}[2\operatorname{ch}(\int_{0}^{\beta}\rho d\tau/2)+\exp(\frac{1}{2}\int_{0}^{\beta}\rho(\tau')d\tau')\kappa_{+}(\beta)\int_{0}^{\beta}d\tau\kappa_{-}(\tau)e^{-\int_{0}^{\tau'}\rho(\tau'')d\tau''}])$$

$$\times e^{\frac{1}{2}\int_{0}^{\tau}\rho(\tau')d\tau'}F_{a,b}$$
(B.2)

И

$$F_a = 1, \tag{B.3}$$

$$F_b = e^{-\beta(\epsilon_\alpha - \mu)} e^{\frac{1}{2} \int_0^\beta \rho(\tau''') d\tau'''} \left[1 + \int_\tau^\beta d\tau' \kappa_-(\tau') \kappa_+(\beta) e^{-\int_0^{\tau'} \rho(\tau'') d\tau''} \right]$$
(B.4)

B.0.3 G_a^{Ψ}

Интегрируя по κ_+, κ_- получим

$$\begin{aligned}
G_a^{\Psi}(\alpha, \uparrow, \tau_1; \alpha, \uparrow, \tau_2) &= e^{-(\epsilon_{\alpha} - \mu)\tau} \oint \frac{dz_{\gamma}}{2\pi z_{\gamma}^2} \int_0^{\infty} dy \int d\xi(0) d\xi(\tau) d\xi(\beta) \\
&\times \exp(-w - y - 2v \operatorname{ch}\left(\frac{\xi(\beta) - \xi(0)}{2}\right) + \frac{\xi(\tau) - \xi(0)}{2}) \langle \xi(0) | e^{-\tau H_v} | \xi(\tau) \rangle \\
&\times \langle \xi(\tau) | e^{-(\beta - \tau)H_v} | \xi(\beta) \rangle e^{\frac{\xi(\beta) - \xi(0)}{2}}
\end{aligned} \tag{B.5}$$

Далее, зафиксируем произвольную констант
уCв определении ξ наложив следующее условие

$$\xi_{<}(0) + \xi_{>}(\beta) = -2\ln 4y\sqrt{v\tilde{v}} \tag{B.6}$$

Интегрируя по у мы получим

$$G^{\Psi}(\alpha, \uparrow, \tau_{1}; \alpha, \uparrow, \tau_{2}) = \oint \frac{dz_{\gamma}}{2\pi z_{\gamma}^{2}} \int \frac{d\xi_{<}(0)d\xi_{>}(\beta)d\nu_{<}d\nu_{>}}{v}$$

$$\times \exp\left(-w - \frac{e^{-\frac{\xi_{<}(0)+\xi_{>}(\beta)}{2}}}{4v} - 2v\operatorname{ch}\left(\frac{\xi_{>}(\beta)-\xi_{<}(0)}{2}\right)\right)$$

$$\times \langle\xi_{<}(0)|\nu_{<}\rangle e^{-\tau J\nu_{<}^{2}}\langle\nu_{<}|e^{\frac{\xi}{2}}|\nu_{>}\rangle$$

$$\times e^{-(\beta-\tau)J\nu_{>}^{2}}\langle\nu_{>}|\xi_{>}(\beta)\rangle e^{\frac{-3\xi_{<}(0)}{2}}e^{-(\epsilon_{\alpha}-\mu)\tau}$$
(B.7)

Далее используя следующий результат (см. формулу 6.794.11 на стр. 794 в [42])

$$\int_{0}^{\infty} d\nu \,\nu \,\mathrm{sh}\,(2\pi\nu) K_{2i\nu}(2v_{\alpha}) K_{2i\nu}(e^{-\xi_{+}/2}) K_{2i\nu}(e^{-\xi_{-}/2}) = \frac{\pi^{2}}{16} \exp\left(-\frac{1}{4v}e^{-\frac{\xi_{+}+\xi_{-}}{2}} - 2v_{\alpha} \,\mathrm{ch}\,\frac{\xi_{+}-\xi_{-}}{2}\right).$$
(B.8)

получим

$$G^{\Psi}(\alpha, \uparrow, \tau_{1}; \alpha, \uparrow, \tau_{2}) = \oint \frac{dz_{\gamma}}{2\pi z_{\gamma}^{2}} \Big|_{\gamma \neq \alpha} \int_{0}^{\infty} d\nu \int \frac{d\xi_{<}(0)d\xi_{>}(\beta)d\nu_{<}d\nu_{>}}{\nu}$$

$$\times \exp(-w)\nu \operatorname{sh} 2\pi\nu K_{2i\nu}(e^{-\xi_{<}(0)/2})K_{2i\nu}(e^{-\xi_{>}(\beta)/2})K_{2i\nu}(2\nu)$$

$$\times e^{-\frac{3\xi_{<}(0)}{2}} \langle \xi_{<}(0)|\nu_{<}\rangle e^{-\tau J\nu_{<}^{2}} \langle \nu_{<}|e^{\frac{\xi}{2}}|\nu_{>}\rangle$$

$$\times e^{-(\beta-\tau)J\nu_{>}^{2}} \langle \nu_{>}|\xi_{>}(\beta)\rangle e^{-(\epsilon_{\alpha}-\mu)\tau}. \qquad (B.9)$$

Интегрируя по $\xi_{<,>}$
и $nu_{<,>}$ мы получаем следующее выражение

$$\begin{aligned}
G^{\Psi}(\alpha,\uparrow,\tau_{1};\alpha,\uparrow,\tau_{2}) &= \oint \frac{dz_{\gamma}}{2\pi z_{\gamma}^{2}} \Big|_{\gamma\neq\alpha} \int_{0}^{\infty} d\nu \frac{\exp(-w)}{v} K_{2i\nu}(2v) \langle \nu | e^{-\frac{3\xi}{2}} | \nu_{<} \rangle e^{-\tau J\nu_{<}^{2}} \langle \nu_{<} | e^{\frac{\xi}{2}} | \nu_{>} \rangle \\
&\times e^{-(\beta-\tau)J\nu_{>}^{2}} \langle \nu_{>} | \nu \rangle e^{-(\epsilon_{\alpha}-\mu)\tau}
\end{aligned}$$
(B.10)

B.0.4 G_b^{Ψ}

Вводя интегрирование по z_{α} подниме
м F_b в показатель экспоненты

$$G_b^{\Psi} = \int_0^\infty dy \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^2} \right) e^{-\tau(\epsilon_{\alpha}-\mu)} \int d\xi_{\beta} d\xi_0 d\xi e^{-w_{\alpha}} e^{\frac{\xi_{\beta}-\xi_0}{2}} e^{-y} e^{-v_{\alpha}e^{\frac{\xi_{\beta}-\xi_0}{2}} - ve^{\frac{\xi_0-\xi_\beta}{2}}} (B.11)$$

$$\times \int d\xi \ \langle \xi_0 | e^{-\tau H_1} | \xi \rangle \ e^{\frac{\xi-\xi_0}{2}} \langle \xi | e^{-(\beta-\tau)H_2} | \xi_{\beta} \rangle \ \delta(\xi_{\beta}+\xi_0+2\ln 4yv_{\alpha})$$

где

$$H_1 = \frac{\dot{\xi}^2}{4J} + Jyv_{\alpha}e^{\frac{\xi_{\beta}+\xi_0}{2}}e^{-\xi}, \qquad H_2 = \frac{\dot{\xi}^2}{4J} + Jyve^{\frac{\xi_{\beta}+\xi_0}{2}}e^{-\xi}$$
(B.12)

Интегрируя по у

$$\begin{aligned}
G_b^{\Psi} &= \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^2}\right) e^{-\tau(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{8v_{\alpha}} \int d\xi_{\beta} d\xi_{0} d\xi e^{\frac{\xi-3\xi_{0}}{2}} \\
\times & \langle \xi_{0} | e^{-\tau H_{1}} | \xi \rangle \ e^{\frac{\xi-\xi_{0}}{2}} \langle \xi | e^{-(\beta-\tau)H_{2}} | \xi_{\beta} \rangle \exp\left[-\frac{1}{4v_{\alpha}} e^{\frac{\xi_{\beta}+\xi_{0}}{2}} - v_{\alpha} e^{\frac{\xi_{\beta}-\xi_{0}}{2}} - v e^{\frac{\xi_{0}-\xi_{\beta}}{2}}\right]
\end{aligned} \tag{B.13}$$

Далее, используя следующий результат(см. формулу 6.794.11 на стр. 794 в [42])

$$\int_{0}^{\infty} d\nu \,\nu \,\mathrm{sh}\,(2\pi\nu) K_{2i\nu}(2\sqrt{v_{\alpha}v}) K_{2i\nu}(e^{-\xi_{0}/2}) K_{2i\nu}(\sqrt{\frac{v}{v_{\alpha}}}e^{-\xi_{\beta}/2})$$
$$= \frac{\pi^{2}}{16} \exp\left(-\frac{1}{4v_{\alpha}}e^{-\frac{\xi_{0}+\xi_{\beta}}{2}} - ve^{\frac{\xi_{0}-\xi_{\beta}}{2}} - v_{\alpha}e^{\frac{\xi_{\beta}-\xi_{0}}{2}}\right). \tag{B.14}$$

можно получить

$$G_{b}^{\Psi} = \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) e^{-\tau(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\xi_{\beta} d\xi_{0} d\xi e^{\frac{\xi-3\xi_{0}}{2}} \int_{0}^{\infty} d\nu K_{2i\nu}(2\sqrt{v_{\alpha}v}) \quad (B.15) \\ \times \Phi_{\nu}(\xi_{0}) \tilde{\Phi}_{\nu}(\xi_{\beta}) \int d\nu_{1} d\nu_{2} e^{-\tau J \nu_{1}^{2}} e^{-(\beta-\tau) J \nu_{2}^{2}} \Phi_{\nu_{1}}(\xi_{0}) \Phi_{\nu_{1}}(\xi) \tilde{\Phi}_{\nu_{2}}(\xi) \tilde{\Phi}_{\nu_{2}}(\xi_{\beta}).$$

Интегрирование по ξ_{β} дает δ -функцию $\delta(\nu - \nu_2)$. Далее, заменим δ -функцию следующим интегралом $\int d\xi_{\beta} \Phi_{\nu}(\xi_{\beta}) \Phi_{\nu_2}(\xi_{\beta})$

$$G_b^{\Psi} = \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^2} \right) e^{-\tau(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\xi_0 d\xi_\beta d\xi e^{\frac{\xi-3\xi_0}{2}} \int_0^\infty d\nu K_{2i\nu}(2\sqrt{v_{\alpha}v}) \quad (B.16) \\
 \times \int d\nu_1 d\nu_2 e^{-\tau J\nu_1^2} e^{-(\beta-\tau)J\nu^2} \tilde{\Phi}_{\nu}(\xi) \Phi_{\nu}(\xi_\beta) \Phi_{\nu_2}(\xi_\beta) \Phi_{\nu_2}(\xi_0) \Phi_{\nu_1}(\xi_0) \Phi_{\nu_1}(\xi)$$

Используя (В.14) еще раз получим

$$G_{b}^{\Psi} = \left(\prod_{\gamma} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^{2}} \right) e^{-\tau(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\xi_{0} d\xi_{\beta} d\xi e^{\frac{\xi-3\xi_{0}}{2}} \int d\nu_{1} d\nu_{2} e^{-\tau J\nu_{1}^{2}} e^{-(\beta-\tau)J\nu^{2}}$$
(B.17)
 × $\Phi_{\nu_{2}}(\xi_{\beta}) \Phi_{\nu_{2}}(\xi_{0}) \Phi_{\nu_{1}}(\xi_{0}) \Phi_{\nu_{1}}(\xi) \exp\left[-\frac{1}{4v_{\alpha}}e^{-\frac{\xi+\xi_{\beta}}{2}} - ve^{\frac{\xi_{\beta}-\xi}{2}} - v_{\alpha}e^{\frac{\xi-\xi_{\beta}}{2}}\right]$

Интегрируя по z_{α}

$$G_b^{\Psi} = \left(\prod_{\gamma} \oint \frac{i dz_{\gamma \neq \alpha}}{2\pi z_{\gamma}^2} \right) e^{-\tau(\epsilon_{\alpha} - \mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\xi_0 d\xi_\beta d\xi e^{\frac{\xi - 3\xi_0}{2}} \int d\nu_1 d\nu_2 e^{-\tau J \nu_1^2} e^{-(\beta - \tau) J \nu^2} \quad (B.18) \\ \times \Phi_{\nu_2}(\xi_\beta) \Phi_{\nu_2}(\xi_0) \Phi_{\nu_1}(\xi_0) \Phi_{\nu_1}(\xi) \exp\left[-\frac{1}{4v_{\alpha}} e^{-\frac{\xi + \xi_\beta}{2}} - v_{\alpha} e^{\frac{\xi_\beta - \xi}{2}} - v_{\alpha} e^{\frac{\xi - \xi_\beta}{2}} \right] e^{-\beta(\epsilon_{\alpha} - \mu)} e^{\frac{\xi_\beta - \xi}{2}}$$

В итоге, используя (В.8) получим следующее выражение для Функции Грина

$$G_{b}^{\Psi} = \left(\prod_{\gamma} \oint \frac{i dz_{\gamma \neq \alpha}}{2\pi z_{\gamma}^{2}}\right) e^{-\tau(\epsilon_{\alpha}-\mu)} e^{-\beta(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\xi_{0} d\xi_{\beta} d\xi e^{\frac{\xi_{\beta}-3\xi_{0}}{2}} \int d\nu_{1} d\nu_{2} e^{-\tau J\nu_{1}^{2}} e^{-(\beta-\tau)} \mathcal{B}^{J\nu_{1}^{2}} \mathcal{B}^{J\nu$$

Далее интеграл по ξ дает δ -функцию и мы получаем

$$G_b^{\Psi} = \left(\prod_{\gamma \neq \alpha} \oint \frac{i dz_{\gamma}}{2\pi z_{\gamma}^2}\right) e^{-\tau(\epsilon_{\alpha}-\mu)} e^{-\beta(\epsilon_{\alpha}-\mu)} \frac{e^{-w_{\alpha}}}{2v_{\alpha}} \int d\nu_2 e^{-\tau J\nu^2} e^{-(\beta-\tau)J\nu_2^2} \qquad (B.20)$$

$$\times \int_0^\infty d\nu K_{2i\nu}(2v_{\alpha}) \langle \nu | \frac{1}{\eta} | \nu_2 \rangle \langle \nu_2 | \eta^2 | \nu \rangle$$
Список публикаций

- D.S. Lyubshin, A.U. Sharafutdinov, and I.S. Burmistrov, Phys. Rev. B 89, 201304(R) (2014).
- 2. A.U. Sharafutdinov, D.S. Lyubshin, and I.S. Burmistrov, Phys. Rev. B 90, 195308 (2014).

Литература

- [1] M.N. Kiselev, Y. Gefen, Phys. Rev. Lett. **96**, 066805 (2006).
- [2] I.L. Kurland, I.L. Aleiner, and B.L. Altshuler, Phys. Rev. B 62, 14886 (2000).
- [3] K.A. Matveev and A.V. Andreev, Phys. Rev. B 66, 045301 (2002).
- [4] A. Kamenev, Y. Gefen, Phys. Rev. B 54, 5428 (1996).
- [5] T. Bojdecki, L. G. Gorostiza, and A. Talarczyk, Potential Anal. 28, 71 (2008).
- [6] R.J. Adler, An Introduction to continuity, extrema, and related topics for general Gaussian processes, (Hayward, California, 1990).
- [7] C.M. Canali and A.H. MacDonald, Phys. Rev. Lett. 85, 5623 (2000); S. Kleff, J. von Delft, M.M. Deshmukh, and D.C. Ralph, Phys. Rev. B 64, 220401 (2001); S. Kleff and J. von Delft, Phys. Rev. B 65, 214421 (2002).
- [8] G. Usaj, H. Baranager, Exchange and the Coulomb blockade: Peak height statistics in quantum dots, Phys. Rev. B 67, 121308 (2003).
- Y. Alhassid, T. Rupp, Effects of Spin and Exchange Interaction on the Coulomb-Blockade Peak Statistics in Quantum Dots, Phys. Rev. Lett. 91, 056801 (2003).
- [10] A.M. Finkel'stein, vol. 14 of Soviet Scientific Reviews, ed. by I.M. Khalatnikov, Harwood Academic Publishers, London, (1990).
- [11] A. I. Larkin, Sov. Phys. JETP **31**, 784 (1970).
- [12] Y. Imry and Sh.-K. Ma, Phys. Rev. Lett. **35**, 1399 (1975).
- [13] A. Shnirman, Y. Gefen, A. Saha, I. S. Burmistrov, M. N. Kiselev, and A. Altland, Phys. Rev. Lett. 114, 176806 - (2015)
- [14] V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982)
- [15] U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984)
- [16] A.V. Andreev, A. Kamenev, Phys. Rev. Lett. 81, 3199 (1998).

- [17] L. Amico, A. Di Lorenzo, A. Osterloh Integrable Model for Interacting Electrons in Metallic Grains, Phys. Rev. Lett. 86, 5759 (2001).
- [18] Y. Alhassid, T. Rupp, Arxiv: cond-mat/0312691 (unpublished).
- [19] S. Asmussen and H. Albrecher, Ruin Probabilities (World Scientific, Singapore, 2010).
- [20] H.E. Türeci, Y. Alhassid, Phys. Rev. B 74, 165333 (2006); G. Murthy, Phys. Rev. B 77, 073309 (2008); O. Zelyak, G. Murthy, Phys. Rev. B 80, 205310 (2009).
- [21] I.L. Aleiner and V.I. Fal'ko, Phys. Rev. Lett. 87, 256801 (2001).
- [22] I.L. Kurland, I.L. Aleiner, and B.L. Altshuler, Phys. Rev. B 62, 14886 (2000).
- [23] B. Nissan-Cohen, Y. Gefen, M.N. Kiselev, and I.V. Lerner, Phys. Rev. B 84, 075307 (2011).
- [24] S. Guéron, M.M. Deshmukh, E.B. Myers, and D.C. Ralph, Phys. Rev. Lett. 83, 4148 (1999); M.M. Deshmukh, S. Kleff, S. Guéron, E. Bonet, A.N. Pasupathy, J. von Delft, and D.C. Ralph, Phys. Rev. Lett. 87, 226801 (2001).
- [25] A. Cehovin, C.M. Canali, and A.H. MacDonald, Phys. Rev. B 66, 094430 (2002); G. Usaj and H.U. Baranger, Europhys. Lett. 72, 110 (2005).
- [26] P.W. Brouwer and D.A. Gorokhov, Phys. Rev. Lett. **95**, 017202 (2005).
- [27] M. Misiorny, M. Hell, and M.R. Wegewijs, Nat. Phys. 9, 801 (2013).
- [28] Y. Alhassid and T. Rupp, Phys. Rev. Lett. 91, 056801 (2003); D. Huertas-Hernando and Y. Alhassid, Phys. Rev. B 75, 153312 (2007).
- [29] I.S. Burmistrov, Y. Gefen, and M.N. Kiselev, Phys. Rev. B 85, 155311 (2012).
- [30] I.S. Burmistrov, Y. Gefen, and M.N. Kiselev, JETP Lett. 92, 179 (2010).
- [31] A. Kamenev, Y. Gefen, Phys. Rev. B 54, 5428 (1996).
- [32] A. Saha, Y. Gefen, I.S. Burmistrov, A. Shnirman, and A. Altland Annals of Phys. (N.Y.) 327, 2543 (2012).
- [33] K.B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
- [34] G. D. Mahan, *Many-particle physics*, Plenum Press, N.Y. (1990).

- [35] J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963).
- [36] I. V. Kolokolov, Phys. Lett. A 114, 99 (1986); Ann. Phys. (N.Y.) 202, 165 (1990); M. Chertkov and I. V. Kolokolov, Phys. Rev. B 51, 3974 (1995); Sov. Phys. JETP 79, 824 (1994); for a review see I. V. Kolokolov, Int. J. Mod. Phys. B 10, 2189 (1996).
- [37] N. Sedlmayr, I. V. Yurkevich, and I. V. Lerner, Europhys. Lett. 76, 109 (2006).
- [38] A.U. Sharafutdinov, D.S. Lyubshin, and I.S. Burmistrov, Phys. Rev. B 90, 195308 (2014).
- [39] M. Schechter, Phys. Rev. B 70, 024521 (2004); Zu-Jian Ying, M. Cuoco, C. Noce, Huan-Qiang Zhou, Phys. Rev. B 74, 012503 (2006); Zu-Jian Ying, M. Cuoco, C. Noce, Huan-Qiang Zhou, Phys. Rev. B 74, 214506 (2006); S. Schmidt, Y. Alhassid, K. van Houcke, Europhys. Lett. 80, 47004 (2007); S. Schmidt, Y. Alhassid, Phys. Rev. Lett. 101, 207003 (2008); K. Van Houcke, Y. Alhassid, S. Schmidt, S. M. A. Rombouts, arxiv:1011.5421; Y. Alhassid, K. N. Nesterov, S. Schmidt, Phys. Scr. T 151, 014047 (2012); K. N. Nesterov, Y. Alhassid, Phys. Rev. B 87, 014515 (2013).
- [40] D. Ullmo, Rep. Prog. Phys. **71**, 026001 (2008).
- [41] M. L. Mehta, Random Matrices (Boston: Academic) (1991).
- [42] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 2000).
- [43] J. Hüsler, V. Piterbarg,
- [44] J.W.Negle, H.Orland, Quantum Many-particle Systems, Westview Press, 2008
- [45] Y. Alhassid, Rev. Mod. Phys. 72, 895 Published 1 October 2000